فضای هاسدورف
اصول جداسازی در فضاهای توپولوژی | |
---|---|
طبقه بندی کولموگوروف | |
(کولموگوروف) | |
(فرشه) | |
(هاسدورف) | |
(اوریسون) | |
کاملاً | (کاملاً هاسدورف) |
(هاسدورف منظم) | |
(تیخونوف) | |
(هاسدورف نرمال) | |
(کاملاً نرمال/هاسدورف) | |
(نرمال بینقص/هاسدورف) | |
در توپولوژی و شاخه های مرتبط با آن در ریاضیات، یک فضای هاسدورف (به انگلیسی: Hausdorff Space)، فضای جداسازی شده یا فضای
فضاهای هاسدورف به افتخار فلیکس هاسدورف، یکی از بنیانگذاران توپولوژی نامگذاری شده است. تعریف اولیه هاسدورف از یک فضای توپولوژی (در ۱۹۱۴ میلادی) شامل شرط هاسدورف در قالب یک اصل بوده است.
تعاریف
نقاط x و y در یک فضای توپولوژی چون X را می توان به کمک همسایهها جداسازی کرد اگر وجود داشته باشد یک همسایگی از x چون U و یک همسایگی از y چون V به گونه ای که U و V مجزا باشند (
یک مفهوم مرتبط اما ضعیف تر، مفهوم فضای پیشمنظم است. X را فضای پیشمنظم گویند اگر هر دو نقطه متمایز توپولوژیکی (نقاطی که تمام همسایگی هایشان یکی نباشند) را بتوان توسط همسایگی های مجزا جداسازی کرد. فضاهای پیشمنظم را فضاهای
رابطه بین این دو شرط به این صورت است: یک فضای توپولوژی هاسدورف است است اگر و تنها اگر هم پیشمنظم باشد (یعنی نقاط متمایز توپولوژیکی آن توسط همسایگی ها جداسازی شود) و هم کولموگوروف (یعنی نقاط متمایز آن به صورت توپولوژیکی هم متمایز باشند). یک فضای توپولوژیکی پیشمنظم است اگر و تنها اگر خارج قسمت کولموگوروف آن هاسدورف باشد.
ارجاعات
منابع
- Arkhangelskii, A.V., L.S. Pontryagin, General Topology I, (1990) Springer-Verlag, Berlin. شابک ۳−۵۴۰−۱۸۱۷۸−۴.
- Bourbaki; Elements of Mathematics: General Topology, Addison-Wesley (1966).
- "Hausdorff space", Encyclopedia of Mathematics, EMS Press, 2001 [1994]
- Willard, Stephen (2004). General Topology. Dover Publications. ISBN 0-486-43479-6.