e (عدد)
عدد
همچنین این عدد، عدد منحصربهفردی است که نمودار تابع
تابع نمایی
برخی مواقع به
عدد
تاریخچه
اولین اشاره به این عدد، در جدولی که در ضمیمهٔ مقالهٔ مربوط به لگاریتم جان نپر در سال ۱۶۱۸ انتشار یافته بود مشاهده میشود. با این حال، این مقاله توضیحی راجع به این عدد نمیداد بلکه تنها لیستی از لگاریتمهای حساب شده در مبنای این عدد را نشان میداد. به نظر میرسد که این جدول توسط ویلیام اوترد تهیه شدهاست. اما «کشف» این عدد توسط ژاکوب برنولی به انجام رسید، کسی که تلاش میکرد مقدار عبارت زیر را محاسبه کند (که در حقیقت همان e است):
اولین استفاده شناخته شده از این عدد، که آن زمان با b نمایش داده میشد، در مکاتبات بین گوتفرید لایبنیتس و کریستیان هویگنس بین سالهای ۱۶۹۰ تا ۱۶۹۱ مشاهده شدهاست. همچنین برای اولین بار اویلر بین سالهای ۱۷۲۷ تا ۱۷۲۸ شروع به استفاده از e برای نمایش این عدد کرد و اولین استفاده از آن در مقاله، در مکانیک اویلر در سال ۱۷۳۶ مشاهده میشود. در حالی که سالهای پس از آن نیز عدهای از ریاضی دانان از c برای نمایش این عدد استفاده میکردند، اما e بیشتر مرسوم بود. در نهایت نیز e به عنوان نماد استاندارد این عدد امروزه استفاده میشود.
نماد e
در اینکه چرا عدد
لازم است ذکر شود که اویلر علاقه زیادی به استفاده از نمادهای ریاضی داشت و ریاضیات امروز علاوه بر عدد
کاربردها
مسئله بهره مرکب
برنولی هنگام مطالعه بر روی مسئله بهره مرکب توانست این عدد را کشف کند.
به عنوان مثال یک حساب را فرض کنید که در آن
برنولی متوجه شد که این سری برای محاسبه در بازههای زمانی کوچکتر و بیشتر به یک عدد ثابت نزدیک میشود. محاسبهٔ هفتگی سود منجر به بهدست آوردن
آزمایش برنولی
عدد e در نظریه احتمالات، جایی که به نظر نمیرسد بهطور واضح هیچ نرخ رشد نمایی وجود داشته باشد، نیز نقش بسزایی ایفا میکند. برای مثال فرض کنید که قمارباز در حال بازی با یک ماشین اسلات (به انگلیسی: slot machine) است. قمارباز یک از n شانس پیروزی دارد و این بازی را n بار انجام میدهد. داریم برای nهای بزرگ (برای مثال چندین میلیون بازی) احتمال این که قمارباز در تمام بازیها شکست بخورد برابر با
این یک مثال از آزمایش برنولی است. هر بار که یک قمارباز بازی میکند یک در میلیون شانس پیروزی دارد. یک میلیون بار بازی کردن را میتوان به وسیله توزیع دوجملهای مدلسازی کرد. پیروزی در k بار از این یک میلیون بار برابر است با:
در حالت خاصی که در آن k برابر صفر است، یعنی عدم پیروزی در تمامی بازیها، داریم:
این عدد بسیار به عدد
مسئله پریش
یکی دیگر از کاربردهای e توسط ژاکوب برنولی در کنار پیر ریموند دو مونتمورت (به فرانسوی: Pierre Raymond de Montmort) این بار هنگام کار کردن بر روی مسئله پریش که به اسم مسئله تحویل کلاه نیز شناخته میشود، کشف شد. فرض کنید n نفر به یک مهمانی دعوت شدهاند، هر نفر هنگام ورود کلاهش را به پیشخدمت میدهد و او نیز آنها را در n جعبه که هر کدام به نام یکی از مهمانها نامگذاری شدهاست، میگذارد. اما پیشخدمت هویت مهمانها را نمیداند پس او هر کلاه را به صورت تصادفی در یکی از جعبهها میگذارد. مسئله دو مونتمورت این است که احتمال اینکه هیچکدام از کلاهها داخل جعبهٔ خودشان قرار نگرفته باشند چقدر است. پاسخ اینگونهاست:
با زیاد شدن تعداد مهمانها و میل کردن n به سمت بینهایت مقدار
مجانبها
عدد e در بحث مجانبها و روند صعودی توابع نیز نقش خاصی بازی میکند. برای مثال این عدد همراه با عدد پی (به یونانی: π) در تقریب استرلینگ برای تابع فاکتوریل دیده میشود.
نتیجهٔ مستقیم این معادله به حد زیر برای به دست آوردن عدد e منجر میشود.
e در ریاضیات
انگیزهٔ اصلی کشف عدد e، بهخصوص در ریاضیات، حل مشتقها و انتگرالها شامل توابع نمایی و لگاریتم بودهاست.
مشتق تابع عمومی نمایی
حد قسمت راست از متغیر x مستقل است و فقط به مقدار a مرتبط است. وقتی که پایهٔ تابع نمایی برابر e باشد، مقدار این حد برابر یک میشود. پس e را به صورت نمادین توسط عبارت زیر تعریف میکنند:
بنابراین تابع نمایی با پایهٔ e برای محاسبات حساب دیفرانسیل بسیار مناسب است. انتخاب e به جای اعداد دیگر، به عنوان پایهٔ تابع نمایی مشتق گرفتن از این تابع را سادهتر کردهاست.
انگیزهٔ دیگر برای کشف e انتخاب آن برای مبنای لگاریتم طبیعی بودهاست. مشتق تابع لگاریتم عمومی
که در عبارت آخر تغییر متغیر
لگاریتم در این مبنای خاص (یعنی e) را لگاریتم طبیعی مینامند و آن را با "ln" نمایش میدهند. این تابع هنگام مشتق گرفتن رفتار مناسبی دارد و حد موجود در مشتق این تابع یک میشود.
پس از طریق دو راه به نتیجهٔ a=e خواهیم رسید. یک راه از طریق برابر بودن مشتق تابع نمایی
تعریفهای جایگزین
روشهای دیگری نیز برای تعریف e موجود است: یک از آنها حد یک دنباله در بینهایت، دیگری مجموع یک سری نامتناهی است. همچنین تعاریف مختلفی توسط انتگرال نیز برای این عدد موجود است. بعضی از این تعاریف شامل موارد زیر میشود:
۱. عدد e، یک عدد حقیقی مثبت یکتای است؛ به طوری که:
۲. عدد e، یک عدد حقیقی مثبت یکتای است؛ به طوری که:
تعاریف زیر را میتوان از تعاریف اصلی اثبات کرد.
۳. عدد e حد یک دنباله در بینهایت است:
به صورت مشابه داریم:
۴. عدد e مجموع یک سری نامتناهی است:
در اینجا !n به معنای n فاکتوریل است.
۵. عدد e، یک عدد حقیقی مثبت یکتای است؛ به طوری که:
خواص
ریاضیات
تابع نمایی
همینطور برای انتگرال این تابع داریم:
توابع نمایی
ماکزیمم مطلق تابع
در نقطهٔ
که برای xهای مثبت تعریف شدهاست، مینیمم مطلق میشود.
به صورت کلیتر برای تابع
که برای xهای مثبت تعریف شدهاست، مینیمم مطلق در نقطهٔ
تتریشن یا هایپر-۴ (به انگلیسی: tetration) نامتناهی
بر اساس نظریه اویلر همگرا خواهد شد؛ اگر و فقط اگر
نظریه اعداد
عدد e یک عدد گنگ است. لئونارد اویلر این موضوع را به وسیلهٔ نامتناهی شدن بسط کسرهای متوالی ساده، نشان داد. به علاوه عدد e یک عدد متعالی است. این عدد، اولین عددی بود که با وجود این که با هدف ایجاد یک عدد متعالی ساخته نشده بود، متعالی بودنش اثبات شد (در مقایسه با عدد لیوویل). چارلز هرمیت این موضوع را در سال ۱۸۷۳ اثبات کرد.
اعداد مختلط
تابع نمایی
به این علت که این سری حاوی خاصیتهای مهمی برای تابع
که برای تمامی xهای مختلط صحیح است، که در مورد خاص x = π برابر معادلهٔ مشخصهٔ اویلر میشود:
همچنین از آن میتوان جواب چندگانهٔ لگاریتم زیر را بهدست آورد:
به علاوه، از این معادلهٔ میتوان بسط را بهدست آورد:
که به معادله دی موآور معروف است.
معادلهٔ
نیز به (Cis(x معروف است.
معادلات دیفرانسیل
تابع
پاسخ عمومی تمامی معادلات دیفرانسیل خطی به صورت زیر است:
به طوری که با جایگذاری آن در معادله دیفرانسیل خواهیم داش:
که ریشههای آن، sهایی است که پاسخهای عمومی معادلهٔ دیفرانسیل اصلی را میسازد.
نحوهٔ نمایش
ارقام اعشار
تعداد ارقام اعشار شناخته شدهٔ عدد e به صورت فزایندهای در طول سدههای اخیر رشد کردهاست. این رشد مدیون بهبود کارایی کامپیوترها و همچنین بهبود الگوریتمهای محاسبهٔ این ارقام بودهاست.
تاریخ | تعداد رقم اعشار | محاسبه شده به وسیلهٔ |
---|---|---|
۱۷۴۸ | ۱۸ | لئونارد اویلر |
۱۸۵۳ | ۱۳۷ | ویلیام شانکس |
۱۸۷۱ | ۲۰۵ | ویلیام شانکس |
۱۸۸۴ | ۳۴۶ | ج. مارکوس بورمن |
۱۹۴۶ | ۸۰۸ | نامشخص |
۱۹۴۹ | ۲٬۰۱۰ | جان فون نیومن (توسط کامپیوتر انیاک) |
۱۹۶۱ | ۱۰۰٬۲۶۵ | دانیل شانکس و جان رنچ |
۱۹۷۸ | ۱۱۶٬۰۰۰ | استفان گری وزنیک توسط کامپیوتر (اپل ۲) |
۱۹۹۴ آوریل | ۱۰٬۰۰۰٬۰۰۰ | رابرت نمیرف و جری بنل |
۱۹۹۷ می | ۱۸٬۱۹۹٬۹۷۸ | پاتریک دمیشل |
۱۹۹۷ اوت | ۲۰٬۰۰۰٬۰۰۰ | بیرگر سیفرت |
۱۹۹۷ سپتامبر | ۵۰٬۰۰۰٬۸۱۷ | پاتریک دمیشل |
۱۹۹۹ فوریه | ۲۰۰٬۰۰۰٬۵۷۹ | سباستین ودنیسکی |
۱۹۹۹ اکتبر | ۸۶۹٬۸۹۴٬۱۰۱ | سباستین ودنیسکی |
۱۹۹۹ نوامبر | ۱٬۲۵۰٬۰۰۰٬۰۰۰ | خاویر گردون |
۲۰۰۰ ژوئیه | ۲٬۱۴۷٬۴۸۳٬۶۴۸ | خاویر گردون و شیگرو کندو |
۲۰۰۰ ژوئیه | ۳٬۲۲۱٬۲۲۵٬۴۷۲ | کولین مارتین و خاویر گردون |
۲۰۰۰ اوت | ۶٬۴۴۲٬۴۵۰٬۹۴۴ | خاویر گردون و شیگرو کندو |
۲۰۰۰ اوت | ۱۲٬۸۸۴٬۹۰۱٬۰۰۰ | خاویر گردون و شیگرو کندو |
۲۰۰۳ اوت | ۲۵٬۱۰۰٬۰۰۰٬۰۰۰ | خاویر گردون و شیگرو کندو |
۲۰۰۳ سپتامبر | ۵۰٬۱۰۰٬۰۰۰٬۰۰۰ | خاویر گردون و شیگرو کندو |
۲۰۰۷ آوریل | ۱۰۰٬۰۰۰٬۰۰۰٬۰۰۰ | شیگرو کندو و استیو پالیارو |
۲۰۰۹ می | ۲۰۰٬۰۰۰٬۰۰۰٬۰۰۰ | شیگرو کندو و استیو پالیارو |
۲۰۱۰ فوریه | ۵۰۰٬۰۰۰٬۰۰۰٬۰۰۰ | الکساندر جی. لی |
۲۰۱۰ ژوئیه | ۱٬۰۰۰٬۰۰۰٬۰۰۰٬۰۰۰ | الکساندر جی. لی و شیگرو کندو |
۲۰۱۵ ژوئن | ۱٬۴۰۰٬۰۰۰٬۰۰۰٬۰۰۰ | الی هبرت |
۲۰۱۶ فوریه | ۱٬۵۰۰٬۰۰۰٬۰۰۰٬۰۰۰ | رون واتکینز |
۲۰۱۶ می | ۲٬۵۰۰٬۰۰۰٬۰۰۰٬۰۰۰ | «یو یو» |
۲۰۱۶ اوت | ۵٬۰۰۰٬۰۰۰٬۰۰۰٬۰۰۰ | رون واتکینز |
۲۰۱۹ ژانویه | ۸٬۰۰۰٬۰۰۰٬۰۰۰٬۰۰۰ | جرالد هافمن |
دسامبر ٢٠٢٠ | ۳۱٬۴۱۵٬۹۲۶٬۵۳۵٬۸۹۷ | دیوید کریستل |
جستارهای وابسته
منابع
- ↑ "Compendium of Mathematical Symbols". Math Vault (به انگلیسی). 2020-03-01. Retrieved 2020-08-10.
- ↑ Swokowski, Earl William (1979). Calculus with Analytic Geometry (illustrated ed.). Taylor & Francis. p. 370. ISBN 978-0-87150-268-1. Extract of page 370
- ↑ "e - Euler's number". www.mathsisfun.com. Retrieved 2020-08-10.
- ↑ Encyclopedic Dictionary of Mathematics 142.D
- ↑ Weisstein, Eric W. "e". mathworld.wolfram.com (به انگلیسی). Retrieved 2020-08-10.
- ↑ Marsden, Jerrold; Weinstein, Alan (1985). Calculus I (2nd ed.). Springer. p. 319. ISBN 0-387-90974-5.
- ↑ Sondow, Jonathan. "e". Wolfram Mathworld. Wolfram Research. Retrieved 10 May 2011.
- ↑ Pickover, Clifford A. (2009). The Math Book: From Pythagoras to the 57th Dimension, 250 Milestones in the History of Mathematics (illustrated ed.). Sterling Publishing Company. p. 166. ISBN 978-1-4027-5796-9. Extract of page 166
- ↑ O'Connor, J J; Robertson, E F. "The number e". MacTutor History of Mathematics.
- ↑ Howard Whitley Eves (1969). An Introduction to the History of Mathematics. Holt, Rinehart & Winston. ISBN 978-0-03-029558-4.
- ↑ O'Connor, J.J. , and Roberson, E.F. ; The MacTutor History of Mathematics archive: «The number e»; University of St. Andrews Scotland (2001)
- ↑ Meditatio in experimenta explosione tormentorum nuper instituta.
- ↑ Grinstead, C.M. and Snell, J.L. Introduction to probability theory بایگانیشده در ۲۷ ژوئیه ۲۰۱۱ توسط Wayback Machine (published online under the GFDL), p. ۸۵.
- ↑ Knuth (۱۹۹۷) The Art of Computer Programming Volume I, Addison-Wesley, p. ۱۸۳.
- ↑ Havil, J. Gamma (۲۰۰۳)، Exploring Euler's Constant، Princeton, NJ: Princeton University Press، ص. ۸۶–۸۸
- ↑ Robbins, H. «A Remark of Stirling's Formula.» Amer. Math. Monthly 62, 26-29, 1955.
- ↑ Stirling, J. «Methodus differentialis, sive tractatus de summation et interpolation serierum infinitarium.» London, 1730. English translation by Holliday, J. «The Differential Method: A Treatise of the Summation and Interpolation of Infinite Series.» ۱۷۴۹.
- ↑ Whittaker, E. T. and Robinson, G. «Stirling's Approximation to the Factorial.» §۷۰ in «The Calculus of Observations: A Treatise on Numerical Mathematics», 4th ed. New York: Dover, pp. 138-140, 1967.
- ↑ Stirling's Approximation
- ↑ برای مثال نگاه کنید به: Kline, M. (۱۹۹۸) Calculus: An intuitive and physical approach, Dover, section ۱۲٫۳ «The Derived Functions of Logarithmic Functions.»
- ↑ This is the approach taken by Klein (1998).
- ↑ «How Euler Did It: Who proved e is Irrational?» (PDF). بایگانیشده (PDF) از روی نسخه اصلی در ۲۵ سپتامبر ۲۰۰۶. دریافتشده در ۲۵ سپتامبر ۲۰۰۶.
- ↑ Sebah, P. and Gourdon, X. ; The constant e and its computation
- ↑ Gourdon, X. ; Reported large computations with PiFast
- ↑ New Scientist 21st July 2007 p.40
- ↑ [۱] Statement from Daniel Shanks & John W Wrench — We have computed e on a 7090 to ۱۰۰٬۲۶۵D by the obvious program. On page 78 of their article «Calculation of Pi to ۱۰۰٬۰۰۰ Decimals» in the journal Mathematics of Computation, vol ۱۶ (۱۹۶۲), issue 77, page 76-99.
- ↑ Byte Magazine Vol 6, Issue 6 (June 1981) p.۳۹۲) «The Impossible Dream: Computing e to ۱۱۶٬۰۰۰ places with a Personal Computer»
- ↑ Email from Robert Nemiroff and Jerry Bonnell - The Number e to 1 Million Digits
- ↑ «Email from Xavier Gourdon to Simon Plouffe - I have made a new e computation (with verification): ۱٬۲۵۰٬۰۰۰٬۰۰۰ digits». بایگانیشده از اصلی در ۲۱ مارس ۲۰۱۲. دریافتشده در ۲۱ آوریل ۲۰۱۱.
- ↑ PiHacks message 176 - calculation of E: World record by Shigeru Kondo
- ↑ PiHacks message 177 - E to ۳٬۲۲۱٬۲۲۵٬۴۷۲ D
- ↑ PiHacks message 1062 - New world record computation of E: ۲۵٬۱۰۰٬۰۰۰٬۰۰۰ digits
- ↑ PiHacks message 1071 - Two new records: 50 billions for E and 25 billions for pi
- ↑ «English Version of PI WORLD». بایگانیشده از اصلی در ۱۸ اوت ۲۰۱۱. دریافتشده در ۲۱ آوریل ۲۰۱۱.
- ↑ Announcing 500 billion digits of e...
- ↑ A list of notable large computations of e
- ↑ A list of notable large computations of e|
- ↑ A list of notable large computations of e|
- ↑ A list of notable large computations of e|
- ↑ A list of notable large computations of e|
- ↑ A list of notable large computations of e|
- ↑ "e" (به انگلیسی). numberworld.org. 5 December 2020. Retrieved 23 January 2023.