اشتراک (نظریه مجموعهها)
مجموعهٔ شامل عضوهای مشترک دو مجموعه را اشتراک آنها مینامیم و آن را با نماد ∩ نشان میدهیم مثل : A∩B
گونه | عمل مجموعه |
---|---|
گرایش | نظریه مجموعهها |
بیان | اشتراک برابر مجموعه عناصری است که هم در مجموعه |
بیان نمادین |
تعریف
اگر S مجموعهای ناتهی از مجموعهها باشد و
مجموعه بالا طبق اصل تصریح وجود دارد و با استفاده از اصل موضوع گسترش میتوان نشان داد که یکتاست.
اشتراک "صفر"تا مجموعه در حالت کلی تعریف نمیشود؛ اما در یک مسئله خاص اگر مجموعه مرجع U باشد، تعریف میشود
اشتراک دو مجموعه دلخواه A و B را با
خواص اشتراک
مهمترین ویژگی اشتراک دستهای از مجموعهها این است که زیرمجموعه همه آنهاست. فیالواقع اشتراک آنها بزرگترین مجموعهایست که این ویژگی را دارد.
اگر اجتماع دو مجموعه A و B را با
- اگر و تنها اگر.
جستارهای وابسته
منابع
- Enderton, H. B. Elements of Set Theory, 2nd edition, ACADEMIC Press, Inc., 1977.
عملیات دوتایی | ||||
---|---|---|---|---|
عددی | تابعی | مجموعهای | ساختاری | |
مقدماتی
+ جمع حسابی
div خارج قسمت اقلیدسی ترکیباتی
() ضریب دوجملهای | ∘ ترکیب ∗ کانولوشن |
جبر مجموعهها
∪ اجتماع ترتیب کلی
توریها
|
مجموعهها
× ضرب دکارتی گروهها
⊕ حاصلجمع مستقیم مدولها
⊗ ضرب تانسوری |
درختها
واریتههای متصل
# جمع متصل فضاهای نقطهدار
|
بُرداری | ||||
(.) ضرب اسکالر ∧ ضرب برداری | ||||
جبری | ||||
[,] کروشه لی {,} کروشه پواسون ∧ ضرب خارجی | ||||
هومولوژی | ||||
∪ cup-produit • حاصلضرب اشتراک | ترتیبی | |||
+ الحاق | ||||
منطق بولی | ||||
∧ عطف منطقی | ∨ فصل منطقی | ⊕ یای انحصاری | ⇒ استلزام منطقی | ⇔ اگر و فقط اگر |