انتگرال
در ریاضیات، انتگرال (به فرانسوی: Integral)، روشی برای اختصاص اعداد به توابع است؛ به گونهای که جابجایی، مساحت، حجم و دیگر مفاهیم برآمده از ترکیب دادههای بینهایت کوچک را به وسیله آن بتوان توصیف کرد. انتگرالگیری یکی از دو عمل مهم در حساب دیفرانسیل و انتگرال است، که عمل دیگر آن (عمل معکوس) دیفرانسیلگیری یا همان مشتقگیری است. برای تابع داده شدهای چون f از متغیر حقیقی x و بازه
بهطور صوری به عنوان مساحت علامتدار ناحیهای از صفحه xy که به نمودار f، محور x و خطوط عمودی x=a و x=b محدود شدهاست. نواحی بالای محور x به مساحت کل افزوده و نواحی پایین محور x از آن میکاهند.
عملیات انتگرالگیری، در حد یک مقدار ثابت (یعنی بدون در نظر گرفتن یک مقدار ثابت)، معکوس عملیات دیفرانسیلگیری است. بدین منظور، اصطلاح انتگرال را میتوان به معنای پاد-مشتق نیز به کار برد، یعنی تابعی چون F که مشتقش تابع داده شدهٔ f باشد. در این حالت به انتگرال f، انتگرال نامعین گفته شده و به صورت زیر نوشته میشود:
انتگرالهایی که در این مقاله مورد بحث قرار میگیرند از نوع انتگرال معین اند. قضیه اساسی حساب، دیفرانسیلگیری را به انتگرال معین ارتباط میدهد: اگر f یک تابع پیوسته حقیقی مقدار روی بازهٔ
اصول انتگرالگیری بهطور مستقل توسط اسحاق نیوتون و گوتفرید ویلهلم لایبنیز در اواخر قرن هفدهم میلادی قاعدهبندی شد، آنها انتگرال را به صورت جمع مستطیلهایی با عرضهای بینهایت کوچک میدیدند. برنارد ریمان تعریف دقیقی از انتگرال ارائه نمود. این تعریف بر اساس فرایند حد گیری است که مساحت زیر نمودار یک خم را با شکستن آن ناحیه به قطعات نازک عمودی تخمین میزند. با شروع قرن نوزدهم میلادی، مفاهیم پیچیدهتری از انتگرال ظهور پیدا کرد که در آن نوع تابع به علاوه دامنه انتگرالگیری تعمیم یافت. انتگرال خطی برای توابع دو یا چند متغیره تعریف شدهاست و بازه انتگرالگیری
تاریخچه
قبل از حسابان
اولین تکنیک نظام مندی که قادر به تعیین انتگرال، روش افنا بود که توسط ستارهشناس یونان باستان، اودوکسوس (حدود ۳۷۰ قبل از میلاد) معرفی شد. در این روش مساحتها و حجمها به تعداد نامتناهی تکه که مساحت یا حجم هر کدام از آن تکهها معلوم بود تقسیمبندی میشدند. ارشمیدس این روش را ارتقاء داده و از آن در قرن سوم قبل از میلاد استفاده کرد تا مساحتهای سهمی و دایره را به کمک آن بدست آورد.
روش مشابهی بهطور مستقل در حدود قرن سوم بعد از میلاد توسط میو هوی در چین بدست آمد، او از این روش برای بدست آوردن مساحت دایره استفاده کرد. این روش بعدها در قرن پنجم میلادی توسط ریاضیدانان پدر و پسر چینی یعنی زو چونگژی و زو گنگ برای بدست آوردن حجم یک کره (Shea 2007; Katz 2004، صص. ۱۲۵–۱۲۶) مورد استفاده قرار گرفت.
در خاورمیانه، حسن ابن الهیثم (نام لاتین شده او Alhazen است) (۹۶۵–۱۰۴۰ میلادی) فرمولی برای جمع توانهای چهارم بدست آورد. او از این فرمول برای بدست آوردن چیزی استفاده کرد که اکنون میدانیم انتگرال آن تابع است، وی از آن برای محاسبه حجم یک سهمی گون استفاده نمود.
تا قرن هفدهم میلادی پیشرفت مهمی در حساب انتگرال صورت نگرفت. در این زمان بود که روش کاوالیری یعنی روش تقسیم ناپذیرها، و همچنین کارهای فرما، بنیانگذاری حساب مدرن را کلید زدند. کاوالیری در فرمولهای مربع کاوالیری خود، انتگرالهای
نیوتون و لایبنیز
در قرن هفدهم میلادی، با اکتشافات مستقل قضیه اساسی حساب توسط لایبنیز و نیوتون، پیشرفت عمده ای در انتگرالگیری بهوجود آمد. لایبنیز کار خود در ارتباط با حساب را قبل از نیوتون منتشر کرد. این قضیه ارتباطی بین انتگرالگیری و دیفرانسیلگیری را اثبات میکند. این ارتباط، از ترکیب سادگی نسبی دیفرانسیلگیری استفاده کرده و از آن در جهت فرایند انتگرالگیری استفاده میکند. بهخصوص، قضیه بنیادی حساب امکان حل دسته وسیع تری از مسائل را میدهد. چارچوب ریاضیاتی جامعی که هردوی لایبنیز و نیوتون بهوجود آوردند از نظر اهمیت در یک سطح هستند. با استفاده از مفهوم حساب بینهایت کوچکها، امکان تحلیل دقیق توابع با دامنههای پیوسته فراهم گشت. این چارچوب در نهایت منجر به ایجاد حسابان شد، ضمن این که نماد انتگرالگیری در حسابان بهطور مستقیم از کارهای لایبنیز برگرفته شدهاست.
صوری سازی
درحالی که نیوتون و لایبنیز رهیافت نظام مندی به انتگرالگیری ارائه نمودند، کارهای آنها فاقد درجه ای از استواری و استحکام ریاضیاتی بود. بیشاپ برکلی، حمله بیاد ماندنی به روش افزایش ناپدید شونده نیوتون کرد و آن را «ارواح کمیتهای مرده» نامید. با توسعه حد، حسابان مجهز به بنیان مستحکمی گشت. ابتدا انتگرالگیری با کمک حدود توسط ریمان از نظر ریاضیاتی مستحکم شد. گرچه که تمام توابع تکه به تکه پیوسته در بازه ای کراندار ریمان-انتگرال پذیرند، اما مثلاً بهطور خاص در بستر آنالیز فوریه با توابعی سروکار داریم که بر اساس روش ریمانی انتگرال پذیر نیستند، لذا به مرور با توسعه تعریف انتگرالگیری، مثل فرمول انتگرالگیری لبگ، توابع بیشتری در دایره توابع انتگرال پذیر قرار گرفتند و بدین طریق نظریه اندازه (زیر شاخه ای از آنالیز حقیقی) شکل گرفت. تعاریف دیگر انتگرال که هردو رهیافت ریمانی و لبگ را بسط میدهند نیز پیشنهاد شدهاند. این رهیافتها بر اساس سیستم اعداد حقیقی بوده و امروزه رایج اند، اما رهیافتهای دیگری نیز وجود دارند که بر اساس دستگاه اعداد فراحقیقی بنیان نهاده شدهاند و از بخش استاندارد (مربوط به آنالیز غیر استاندارد) جمع بینهایت ریمانی برای تعریف انتگرال استفاده میکنند.
مهمترین تعاریف در انتگرال
از مهمترین تعاریف در انتگرال میتوان از انتگرال ریمان و انتگرال لِبِگ است. انتگرال ریمان بهوسیله برنهارد ریمان در سال ۱۸۵۴ ارائه شد که تعریف دقیقی را از انتگرال ارائه میداد تعریف دیگر را هانری لبگ ارائه داد که طبق این تعریف شرایط تعویضپذیری حد و انتگرال با شرط مساوی ماندن عبارت، ارائه میکرد. از دیگر تعاریف ارائه شده در زمینه انتگرال میتوان به انتگرال ریمان–استیلتیس اشاره کرد. پس بهطور خلاصه سه تعریف زیر از مهمترین تعاریف انتگرال میباشند:
محاسبه انتگرال
اکثر روشهای اساسی حل انتگرال بر پایه قضیه اساسی حساب دیفرانسیل و انتگرال بنا نهاده شدهاست که بر طبق آن داریم:
- f تابعی در بازه (a,b) در نظر میگیریم.
- پاد مشتق f را پیدا میکنیم که تابعی است مانند f.
- قضیه اساسی حساب دیفرانسیل و انتگرال را در نظر میگیریم؛ بنابراین مقدار انتگرال ما برابر خواهد بود.
به این نکته توجه کنید که انتگرال واقعاً پاد مشتق نیست (یک عدد است) اما قضیه اساسی به ما اجازه میدهد تا از پاد مشتق برای محاسبه مقدار انتگرال استفاده کنیم. معمولاً پیدا کردن پاد مشتق تابع f کار سادهای نیست و نیاز به استفاده از تکنیکهای انتگرالگیری دارد این تکنیکها عبارتاند از:
- انتگرالگیری بهوسیله تغییر متغیر
- انتگرالگیری جزء به جزء:
- انتگرالگیری با تغییر متغیر مثلثاتی
- انتگرالگیری بهوسیله تجزیه کسرها
روشهایی دیگر نیز وجود دارد که برای محاسبه انتگرالهای معین به کار میرود همچنین میتوان بعضی از انتگرالها با ترفندهایی حل کرد برای مثال میتوانید به انتگرال گاوسی مراجعه کنید.
تقریب انتگرالهای معین
محاسبه سطح زیر نمودار بهوسیله مستطیلهایی زیر نمودار. هر چه قدر عرض مستطیلها کوچک میشوند مقدار دقیق تری از مقدار انتگرال بدست میآید.
انتگرالهای معین ممکن است با استفاده از روشهای انتگرالگیری عددی، تخمین زده شوند. یکی از عمومیترین روشها، روش مستطیلی نامیده میشود در این روش ناحیه زیر نمودار تابع به یک سری مستطیل تبدیل شده و جمع مساحت آنها نشان دهنده مقدار تقریبی انتگرال است. از دیگر روشهایی معروف برای تخمین مقدار انتگرال روش سیمپسون و روش ذوزنقهای است. اگر چه روشهای عددی مقدار دقیق انتگرال را به ما نمیدهند ولی در بعضی از مواقع که انتگرال تابعی قابل حل نیست یا حل آن مشکل است کمک زیادی به ما میکند.
خواص ها
خطی بودن
مجموعه توابع قابل ادغام ریمان در یک بازه بسته [ a , b ] یک فضای برداری را تحت عملیات جمع نقطه ای و ضرب توسط یک اسکالر و عملیات یکپارچه سازی تشکیل می دهد.
یک تابع خطی در این فضای برداری است. بنابراین، مجموعه توابع انتگرال پذیر با گرفتن ترکیبات خطی بسته می شود ، و انتگرال یک ترکیب خطی، ترکیب خطی انتگرال ها است:
به طور مشابه، مجموعه توابع انتگرال پذیر Lebesgue با ارزش واقعی در فضای اندازه گیری داده شده E با اندازه گیری μ تحت ترکیب های خطی بسته می شود و بنابراین یک فضای برداری و انتگرال لبگ را تشکیل می دهد.
یک تابع خطی در این فضای برداری است، به طوری که:
به طور کلی، فضای برداری همه توابع قابل اندازه گیری را در یک فضای اندازه گیری در نظر بگیرید ( E , μ ) و مقادیر را در یک فضای برداری توپولوژیکی کامل فشرده محلی V روی یک میدان توپولوژیکی فشرده محلی K ، f : E → V در نظر بگیرید. سپس می توان یک نقشه انتزاعی انتزاعی تعریف کرد که به هر تابع یک عنصر از V یا نماد ∞ اختصاص می دهد ،
که با ترکیبات خطی سازگار است. در این وضعیت، خطی بودن برای زیرفضای توابعی که انتگرال آنها عنصری از V است (یعنی "محدود") برقرار است. مهمترین موارد خاص زمانی به وجود میآیند که K R ، C یا یک گسترش متناهی از میدان Q p از اعداد پی آدیک باشد ، و V یک فضای برداری با بعد محدود روی K باشد، و زمانی که K = C و V یک مختلط است. فضای هیلبرت
خطی بودن، همراه با برخی ویژگیهای پیوستگی طبیعی و نرمالسازی برای کلاس خاصی از توابع «ساده»، ممکن است برای ارائه یک تعریف جایگزین از انتگرال استفاده شود. این رویکرد دانیل برای مورد توابع با ارزش واقعی در مجموعه X است که توسط نیکلاس بورباکی به توابع با مقادیر در یک فضای برداری توپولوژیکی فشرده محلی تعمیم داده شده است. برای توصیف بدیهی انتگرال به هیلدبراند 1953 مراجعه کنید .
نابرابری ها
تعدادی از نابرابریهای کلی برای توابع قابل انتگرالپذیری ریمان که در بازههای بسته و محدود [ a , b ] تعریف شدهاند وجود دارند و میتوان آنها را به مفاهیم دیگر انتگرال تعمیم داد (لبگ و دانیل).
- مرزهای بالا و پایین. یک تابع انتگرال پذیر f در [ a , b ] ، لزوماً در آن بازه محدود است. بنابراین اعداد حقیقی m و M وجود دارند به طوری که m ≤ f ( x ) ≤ M برای همه x در [ a , b ] . از آنجایی که مجموع پایین و بالایی f بیش از [ a , b ] به ترتیب با m محدود می شوند ( b-a ) و M ( b − a ) ، نتیجه می شود که
- نابرابری بین توابع اگر f ( x ) ≤ g ( x ) برای هر x در [ a , b ] ، هر یک از مجموع بالا و پایین f در بالا به ترتیب با مجموع بالا و پایین g محدود می شود. بدین ترتیب
- زیر بازه ها اگر [ c , d ] زیر بازه ای از [ a , b ] باشد و f ( x ) برای همه x غیر منفی باشد ، آنگاه
- محصولات و مقادیر مطلق توابع. اگر f و g دو تابع باشند، ممکن است حاصل ضربات نقطهای و توان و مقادیر مطلق آنها را در نظر بگیریم :
- نابرابری هلدر فرض کنید که p و q دو عدد واقعی هستند، 1 ≤ p , q ≤ ∞ با1/پ+1/q= 1 و f و g دو تابع قابل ادغام ریمان هستند. سپس توابع | f | و | g | نیز انتگرال پذیر هستند و نابرابری هلدر زیر صادق است: برای p = q = 2 ، نابرابری هولدر به نابرابری کوشی-شوارتز تبدیل می شود.
- نابرابری مینکوفسکی فرض کنید که p ≥ 1 یک عدد واقعی است و f و g توابع قابل انتگرال گیری ریمان هستند. سپس | f | , | g | و | f + g | همچنین قابل ادغام ریمان هستند و نابرابری مینکوفسکی زیر صادق است:
کنوانسیون ها
در این بخش، f یک تابع قابل ادغام ریمان با ارزش واقعی است . انتگرال
در یک بازه [ a , b ] تعریف می شود اگر a < b . این بدان معنی است که مجموع بالا و پایین تابع f در یک پارتیشن a = x 0 ≤ x 1 ≤ ارزیابی می شود. . . ≤ x n = b که مقادیر x i در حال افزایش است. از نظر هندسی، این نشان میدهد که ادغام از چپ به راست انجام میشود و f را در فواصل زمانی [ xi ، x i +1 ] ارزیابی میکند . جایی که یک بازه با شاخص بالاتر در سمت راست یک با شاخص کمتر قرار دارد. مقادیر a و b ، نقاط انتهایی بازه ، حدود یکپارچه سازی f نامیده می شوند . انتگرال ها همچنین می توانند تعریف شوند اگر a > b :
با a = b ، این نشان می دهد:
اولین قرارداد با توجه به در نظر گرفتن انتگرال ها بر فرعی بازه های [ a , b ] ضروری است . دومی می گوید که انتگرال گرفته شده در یک بازه منحط، یا یک نقطه ، باید صفر باشد . یکی از دلایل قرارداد اول این است که انتگرال پذیری f در بازه [ a , b ] دلالت بر این دارد که f در هر زیر بازه [ c , d ] قابل انتگرال است، اما به طور خاص انتگرال ها این ویژگی را دارند که اگر c هر عنصری از [ a باشد. ،b ] ، سپس:
با اولین قرارداد، رابطه حاصل
سپس برای هر جایگشت چرخه ای a ، b و c به خوبی تعریف می شود .
برنامه کاربردی انتگرال
انتگرال ها به طور گسترده در بسیاری از زمینه ها استفاده می شوند. به عنوان مثال، در نظریه احتمال، انتگرال ها برای تعیین احتمال قرار گرفتن برخی متغیر تصادفی در محدوده خاصی استفاده می شوند. علاوه بر این، انتگرال تحت کل تابع چگالی احتمال باید برابر با 1 باشد، که آزمایشی را ارائه میدهد که آیا یک تابع بدون مقادیر منفی میتواند تابع چگالی باشد یا خیر.
انتگرال ها را می توان برای محاسبه مساحت یک منطقه دو بعدی که دارای مرز منحنی است و همچنین محاسبه حجم یک جسم سه بعدی که دارای مرز منحنی است استفاده کرد. مساحت یک ناحیه دو بعدی را می توان با استفاده از انتگرال معین فوق الذکر محاسبه کرد. حجم یک جسم سه بعدی مانند دیسک یا واشر را می توان با ادغام دیسک با استفاده از معادله حجم یک سیلندر،
که در آن
انتگرال ها همچنین در ترمودینامیک، که در آن ادغام ترمودینامیکی برای محاسبه اختلاف انرژی آزاد بین دو حالت داده شده استفاده می شود.
دیگر محاسبات آن
محاسبات تحلیلی
ابتدایی ترین تکنیک برای محاسبه انتگرال های معین یک متغیر واقعی بر اساس قضیه اساسی حساب است. اجازه دهید f(x) تابع x باشد که در یک بازه معین ادغام شود [a, b]. سپس، یک ضد مشتق از f پیدا کنید. یعنی یک تابع F به گونهای که F' = f در بازه. به شرطی که انتگرال و انتگرال در مسیر انتگرال تکینگی بر اساس قضیه اساسی حساب دیفرانسیل و انتگرال، نداشته باشند،
گاهی اوقات لازم است از یکی از تکنیک های متعددی که برای ارزیابی انتگرال ها ایجاد شده است استفاده شود. اکثر این تکنیک ها یک انتگرال را به عنوان یک انتگرال دیگر بازنویسی می کنند که امیدواریم قابل حل تر باشد. تکنیک ها عبارتند از ادغام با جایگزینی، ادغام با قطعات، ادغام با جایگزینی مثلثاتی، و ادغام با کسرهای جزئی. روش های جایگزین برای محاسبه انتگرال های پیچیده تر وجود دارد. بسیاری از انتگرال های غیر عنصری را می توان در یک سری تیلور گسترش داد و ترم به ترم ادغام کرد. گاهی اوقات، سری بی نهایت حاصل را می توان به صورت تحلیلی جمع کرد. روش کانولوشن با استفاده از تابع G-Meijers را نیز می توان استفاده کرد، با این فرض که انتگرال را می توان به عنوان حاصلضرب توابع Meijer G نوشت. همچنین روش های کمتر رایجی برای محاسبه انتگرال های معین وجود دارد. برای مثال، هویت پارسوال را می توان برای تبدیل یک انتگرال بر روی یک ناحیه مستطیلی به یک مجموع بی نهایت استفاده کرد. گاهی اوقات، یک انتگرال را می توان با یک ترفند ارزیابی کرد. برای مثالی از این، انتگرال گاوسی را ببینید.
محاسبات حجم را معمولاً می توان با ادغام دیسک یا ادغام پوسته انجام داد. نتایج خاصی که با تکنیک های مختلف به دست آمده اند در فهرست انتگرال ها جمع آوری شده اند.
نتایج خاصی که با تکنیک های مختلف به دست آمده اند در فهرست انتگرال ها جمع آوری شده اند.
نمادین
بسیاری از مسائل در ریاضیات، فیزیک و مهندسی شامل ادغام در جایی است که یک فرمول صریح برای انتگرال مورد نظر است. جدول انتگرال گسترده ای در طول سال ها برای این منظور گردآوری و منتشر شده است. با گسترش رایانهها، بسیاری از متخصصان، مربیان و دانشآموزان به سیستم جبر رایانهای روی آوردهاند که به طور خاص برای انجام کارهای دشوار یا خستهکننده از جمله یکپارچهسازی طراحی شدهاند. یکپارچهسازی نمادین یکی از انگیزههای توسعه اولین سیستمهایی مانند Macsyma و Maple بوده است.
Aمشکل اصلی ریاضی در ادغام نمادین این است که در بسیاری از موارد، یک تابع نسبتاً ساده انتگرالهایی ندارد که بتوان آن را به صورت شکل بسته که فقط شامل تابع ابتداییها، شامل بیان عقلی و نمای توابع، لگاریتم، توابع مثلثاتی و توابع مثلثاتی معکوس، و عملیات ضرب و ترکیب. الگوریتم Risch یک معیار کلی برای تعیین ابتدایی بودن ضد مشتق یک تابع ابتدایی و محاسبه آن در صورت وجود، ارائه میکند. با این حال، توابع با عبارات بسته ضد مشتقها استثنا هستند، و در نتیجه، سیستمهای جبر رایانهای امیدی به یافتن یک ضد مشتق برای یک تابع ابتدایی تصادفی ندارند. از جنبه مثبت، اگر «بلوکهای سازنده» برای ضدمشتقها از قبل تثبیت شده باشند، ممکن است هنوز بتوان تصمیم گرفت که آیا ضد مشتق یک تابع معین را میتوان با استفاده از این بلوکها و عملیات ضرب و ترکیب بیان کرد و نماد نمادین را یافت. هر وقت هست جواب بده الگوریتم Risch که در ریاضیات، Maple و سایر سیستم جبر رایانه ای پیاده سازی شده است، دقیقاً این کار را برای توابع و ضد مشتقات ساخته شده از توابع گویا، رادیکال ها، لگاریتم و توابع نمایی.
برخی از ادغامهای ویژه اغلب به اندازهای اتفاق میافتند که نیاز به مطالعه ویژه دارند. به طور خاص، ممکن است در مجموعه ضد مشتقات، توابع ویژه (مانند تابع لژاندرها، تابع بیش هندسی، تابع گاما مفید باشد، تابع گامای ناقص و غیره). گسترش الگوریتم ریش برای گنجاندن چنین توابعی ممکن است اما چالش برانگیز است و یک موضوع تحقیقاتی فعال بوده است. اخیراً یک رویکرد جدید پدید آمده است، با استفاده از D-توابع محدود، که راه حل های معادله دیفرانسیل خطیs با ضرایب چند جمله ای هستند. اکثر توابع ابتدایی و ویژه D-متناهی هستند، و انتگرال یک تابع D-محدود نیز یک تابع D-محدود است. این یک الگوریتم برای بیان ضد مشتق یک تابع D-محدود به عنوان حل یک معادله دیفرانسیل ارائه می دهد. این نظریه همچنین به شخص اجازه می دهد تا انتگرال قطعی یک تابع D را به عنوان مجموع یک سری داده شده توسط ضرایب اول محاسبه کند و یک الگوریتم برای محاسبه هر ضریب ارائه می دهد.
عددی
انتگرال های معین را می توان با استفاده از چندین روش ادغام عددی تقریب زد. روش مستطیل بر تقسیم ناحیه زیر تابع به مجموعهای از مستطیلهای مربوط به مقادیر تابع تکیه میکند و برای یافتن مجموع در عرض گام ضرب میشود. یک رویکرد بهتر، قاعده ذوزنقهای، مستطیلهای مورد استفاده در مجموع ریمان را با ذوزنقهها جایگزین میکند. قاعده ذوزنقه ای اولین و آخرین مقادیر را به نصف وزن می کند، سپس در عرض گام ضرب می شود تا تقریب بهتری به دست آید. ایده پشت قاعده ذوزنقه ای، که تقریب های دقیق تر به تابع، تقریب های بهتری را به انتگرال می دهد، می تواند ادامه دهد: قانون سیمپسون انتگرال را با یک تابع درجه دوم تقریب می کند. مجموع ریمان، قانون ذوزنقه ای و قانون سیمپسون نمونه هایی از خانواده ای از قوانین تربیعی هستند که فرمول های نیوتن-کوتس نامیده می شوند. قاعده ربع درجه n نیوتن-کوتس، چند جملهای را در هر زیر بازه با یک درجه چند جملهای «n» تقریب میکند. این چند جمله ای برای درون یابی مقادیر تابع در بازه انتخاب شده است. تقریب های درجه بالاتر نیوتن-کوتس می توانند دقیق تر باشند. ، اما به ارزیابی عملکرد بیشتری نیاز دارند و ممکن است به دلیل پدیده رانج از عدم دقت عددی رنج ببرند. یکی از راهحلهای این مشکل مربع کلنشاو– کورتیس است، که در آن انتگرال با بسط آن بر حسب چندجملهای چبیشف تقریبی میشود.
روش رامبرگ عرض پله ها را به صورت تدریجی نصف می کند، و تقریب ذوزنقه ای را می دهد که با T(h0)، نشان داده شده است. T(h1) و غیره، جایی که hk+1} } نیمی از hk است. برای هر اندازه مرحله جدید، فقط نیمی از مقادیر تابع جدید باید محاسبه شود. بقیه از اندازه قبلی منتقل می شوند. سپس یک چند جمله ای را از طریق تقریب ها درون یابی به T(0) برون یابی می کند. تربیع گوسی تابع را در ریشه های مجموعه ای از چندجمله ای های متعامد ارزیابی می کند. An { روش گاوسی {mvar-نقطهای برای چندجملهای درجه تا 2n − 1 دقیق است. محاسبه انتگرالهای با ابعاد بالاتر (مثلاً محاسبات حجم) از گزینههایی مانند ادغام مونت کارلو استفاده میکند.
مکانیکی
مساحت یک شکل دو بعدی دلخواه را می توان با استفاده از یک ابزار اندازه گیری به نام planimeter تعیین کرد. حجم اجسام نامنظم را می توان با دقت توسط سیال جابجایی هنگام غوطه ور شدن جسم اندازه گیری کرد. === هندسی ===
مساحت را گاهی می توان از طریق هندسی ساختار قطب نما و راستهای معادل مربع یافت. === ادغام با تمایز === کمپف، جکسون و مورالس روابط ریاضی را نشان دادند که اجازه میدهد یک انتگرال با استفاده از تمایز محاسبه شود. محاسبات آنها شامل تابع دیراک دلتا و مشتق جزئی عملگر
کاربرد
انتگرالها در واقع مساحت محصور در زیر نمودار هستند و در فیزیک میتوان برای کاربردهای زیادی تعریف کرد مانند کار انجام شده در یک فر آیند ترمودینامیکی از انتگرال رابطه فشار و حجم به دست میآید. اما بهطور کلی میتوان آن را تغییرات کمیت حاصل ضرب افقی و عمودی نمودار نامید مثلاً: در یک رابطه کمیتها را تحلیل ابعادی میکنیم مثلاً رابطه سرعت و زمان را به صورت زیر نوشته میشود:
سپس دو تحلیل را در هم ضرب میکنیم:
پس مساحت محصور در زیر نمودار برابر با تغییرات طول (جابجایی) است.
پانویس
- ↑ Katz, V.J. 1995. "Ideas of Calculus in Islam and India." Mathematics Magazine (Mathematical Association of America), 68(3):163–174.
- ↑ مشارکت کنندگان ویکی پدیا/دانشنانه ویکی پدیای انگلیسی
- ↑ .
- ↑ (Kempf، Jackson و Morales 2015).
کتابشناسی
- Apostol, Tom M. (1967), Calculus, Vol. 1: One-Variable Calculus with an Introduction to Linear Algebra (2nd ed.), Wiley, ISBN 978-0-471-00005-1
- Bourbaki, Nicolas (2004), Integration I, Springer Verlag, ISBN 3-540-41129-1. In particular chapters III and IV.
- Burton, David M. (2005), The History of Mathematics: An Introduction (6th ed.), McGraw-Hill, p. 359, ISBN 978-0-07-305189-5
- Cajori, Florian (1929), A History Of Mathematical Notations Volume II, Open Court Publishing, pp. 247–252, ISBN 978-0-486-67766-8
- Dahlquist, Germund; Björck, Åke (2008), "Chapter 5: Numerical Integration", Numerical Methods in Scientific Computing, Volume I, Philadelphia: SIAM, archived from the original on 2007-06-15
- Folland, Gerald B. (1984), Real Analysis: Modern Techniques and Their Applications (1st ed.), John Wiley & Sons, ISBN 978-0-471-80958-6
- Fourier, Jean Baptiste Joseph (1822), Théorie analytique de la chaleur, Chez Firmin Didot, père et fils, p. §231
Available in translation as Fourier, Joseph (1878), The analytical theory of heat, Freeman, Alexander (trans.), Cambridge University Press, pp. 200–201 - Heath, T. L., ed. (2002), The Works of Archimedes, Dover, ISBN 978-0-486-42084-4
(Originally published by Cambridge University Press, 1897, based on J. L. Heiberg's Greek version.) - Hildebrandt, T. H. (1953), "Integration in abstract spaces", Bulletin of the American Mathematical Society, 59 (2): 111–139, doi:10.1090/S0002-9904-1953-09694-X, ISSN 0273-0979
- Kahaner, David; Moler, Cleve; Nash, Stephen (1989), "Chapter 5: Numerical Quadrature", Numerical Methods and Software, Prentice Hall, ISBN 978-0-13-627258-8
- Kallio, Bruce Victor (1966), A History of the Definite Integral (PDF) (M.A. thesis), University of British Columbia, archived from the original (PDF) on 5 March 2014, retrieved 5 December 2019
- Katz, Victor J. (2004), A History of Mathematics, Brief Version, Addison-Wesley, ISBN 978-0-321-16193-2
- Leibniz, Gottfried Wilhelm (1899), Gerhardt, Karl Immanuel (ed.), Der Briefwechsel von Gottfried Wilhelm Leibniz mit Mathematikern. Erster Band, Berlin: Mayer & Müller
- Lieb, Elliott; Loss, Michael (2001), Analysis, Graduate Studies in Mathematics, vol. 14 (2nd ed.), American Mathematical Society, ISBN 978-0-8218-2783-3
- Miller, Jeff, Earliest Uses of Symbols of Calculus, retrieved 2009-11-22
- O’Connor, J. J.; Robertson, E. F. (1996), A history of the calculus, retrieved 2007-07-09
- Rudin, Walter (1987), "Chapter 1: Abstract Integration", Real and Complex Analysis (International ed.), McGraw-Hill, ISBN 978-0-07-100276-9
- Saks, Stanisław (1964), Theory of the integral (English translation by L. C. Young. With two additional notes by Stefan Banach. Second revised ed.), New York: Dover
- Shea, Marilyn (May 2007), Biography of Zu Chongzhi, University of Maine, archived from the original on 14 June 2010, retrieved 9 January 2009
- Siegmund-Schultze, Reinhard (2008), "Henri Lebesgue", in Timothy Gowers; June Barrow-Green; Imre Leader (eds.), Princeton Companion to Mathematics, Princeton University Press.
- Stoer, Josef; Bulirsch, Roland (2002), "Topics in Integration", Introduction to Numerical Analysis (3rd ed.), Springer, ISBN 978-0-387-95452-3.
- W3C (2006), Arabic mathematical notation
پیوند به بیرون
کتابهای برخط
- Keisler, H. Jerome, Elementary Calculus: An Approach Using Infinitesimals, University of Wisconsin
- Stroyan, K. D. , A Brief Introduction to Infinitesimal Calculus, University of Iowa
- Mauch, Sean, Sean's Applied Math Book, CIT, an online textbook that includes a complete introduction to calculus
- Crowell, Benjamin, Calculus, Fullerton College, an online textbook
- Garrett, Paul, Notes on First-Year Calculus
- Hussain, Faraz, Understanding Calculus, an online textbook
- Johnson, William Woolsey (1909) Elementary Treatise on Integral Calculus, link from HathiTrust.
- Kowalk, W. P. , Integration Theory, University of Oldenburg. A new concept to an old problem. Online textbook
- Sloughter, Dan, Difference Equations to Differential Equations, an introduction to calculus
- Numerical Methods of Integration at Holistic Numerical Methods Institute
- P. S. Wang, Evaluation of Definite Integrals by Symbolic Manipulation (1972) — a cookbook of definite integral techniques