انتگرال خطی
در ریاضیات انتگرال منحنی الخط (انتگرال روی مسیر نیز نامیده میشود و یکی از شاخههای آن محاسبه کار و شار است) انتگرالی است که یک تابع در طول یک منحنی انتگرالگیری میشود. خطها و مسیرهای متفاوتی بکار میرود. اگر خط (منحنی) بسته باشد آن را انتگرال مسیری گویند.
تابعی که باید از آن انتگرال گرفته شود، ممکن است در یک میدان اسکالر یا یک میدان برداری باشد. مقدار انتگرال خطی برابر جمع مقادیر میدان روی تمام نقاط منحنی است و به وسیلهٔ مقدار توابع اسکالر روی منحنی محاسبه میشود (معمولاً طول کمان برای میدانهای برداری، حاصلضرب بردارهای متفاوت درون میدان است). مقدار دیفرانسیلگیری در انتگرال خطی سادهتر از انتگرال تعریف شده روی فاصله است. فرمولهای سادهای در فیزیک برای مثال
تعریف
برای بعضی از میدانهای اسکالر f: R'n
معنی میشود که f:میدان اسکالر انتگرالپذیر
C: ناحیهای که انتگرال رویش گرفته میشود
r(t): [a, b]
انتگرال خطی میدانها برداری به پارامتریزه شدن (r(t وابستهاند و مقدار اصلی آنها وابسته به جهت آنهاست. به ویژه اگر جهت انتگرال عوض شود، مقدار متمایزی به ما میدهد.
راه استقلال
اگر یک میدان برداری F باشد که برابر گرادیان میدان اسکالر G باشد.
پس یک مشتق از ترکیب G و (r(t هست که
که مقداری برای انتگرال خطی از میدان F روی (r(t است. با دنبالهروی از این روش، یک مسیر روی C به ما میدهد که
در لغت، انتگرال F روی C فقط وابسته به مقادیر نقاط (r(a و (r(b است. بدین گونه مستقل از راهها و جهتهای متفاوت است؛ بنابراین یک میدان برداری که از گرادیان یک میدان اسکالر بدست آمدهاست، راه استقلال مینامند.
کاربردها
انتگرال خطی کاربرد زیادی در فیزیک دارد، برای مثال کار روی حرکت ذرات در میدان نیرو توسط (روی) منحنی C نمایش داده میشود بهطوریکه جهت میدان F برابر انتگرال F روی C است.
رابطهٔ انتگرال خطی با آنالیز اعداد مختلط
چشمانداز اعداد مختلط بهطور دو بعدی، انتگرال خطی در میدان برداری مرتبط است با قسمت حقیقی از انتگرال خطی با درهم آمیختن یک تابع مختلط با یک متغیر مختلط. بنابر معادله کشی ریمان، حلقهی میدان برداری مطابق است با درهم آمیختن تابع هولومورفیک که برابر صفر است. این رابطه و تئوری (قضیه استوکس)، هر دو نمونهای از انتگرال خطیاند که به صفر میرسند.
آنالیز مختلط
انتگرال خطی یک روش بنیادی در آنالیز مختلط است. فرض U یک زیرمجموعه بازی است در C,
a = t0 <t1 <... <tn = b
که با توجه به بالا میشود
انتگرال بالا برابر حد مجموع بالاست که طول زیرمجموعهها به سمت صفر میل میکند. اگر یک منحنی متغیر باشد، انتگرال خطی میتواند محاسبه کند، بهطوریکه انتگرال تابع با مقادیر حقیقی باشد.
وقتی
نشان میدهند که معمولاً برای انتگرال خطی f روی
مثال
با توجه به تابع f(z)=1/z و منحنی C حول صفر با شعاع ۱ که با e، پارامتریزه میشود که t در
که میتوان این مثال را از طریق انتگرال کشی بازبینی نمود.
مکانیک کوانتومی
راه انتگرالگیری در مکانیک کوانتومی، در واقع ارجاع داده میشود به روش انتگرالگیری از این طریق، اما توابع انتگرالی که انتگرال آنها در فضاست نه میدان دوبعدی، اگرچه (اما) روش انتگرالگیری از این طریق دارای اهمیت بسیار زیادی در ریاضیات مکانیک کوانتومی دارد. برای مثال، انتگرال خطی مختلط اغلب در ارزیابی احتمال انباشتگی در قضیهی پراکندگی کوانتوم کاربرد دارد.
جستارهای وابسته
منابع
- ↑ Kwong-Tin Tang (30 November 2006). Mathematical Methods for Engineers and Scientists 2: Vector Analysis, Ordinary Differential Equations and Laplace Transforms. Springer Science & Business Media. ISBN 978-3-540-30268-1.
- ↑ "List of Calculus and Analysis Symbols". Math Vault (به انگلیسی). 2020-05-11. Retrieved 2020-09-18.
پیوند به بیرون
- "Integral over trajectories", Encyclopedia of Mathematics, EMS Press, 2001 [1994]
- Path integral در PlanetMath.