توابع مورد استفاده در مهندسی و توابع نمایانگر سیگنالها معمولاً توابعی از زمان هستند یا به عبارت دیگر توابعی که در میدان زمان تعریف شدهاند. برای حل بسیاری از مسائل بهتر است که تابع در دامنه فرکانس تعریف شده باشد؛ زیرا این دامنه ویژگیهایی دارد که به راحتی محاسبات میانجامد.
فاز توابع کسینوسی میباشد. قابل مشاهده است که با در دست داشتن بسامدها
، دامنهها
و فازها
تابع بهطور کامل قابل تعریف است. توجه شود که بر اساس گفتههای بالا تابع مستقل از زمان قابل تعریف است.
Common forms
The Fourier series can be represented in different forms. The amplitude-phase form, sine-cosine form, and exponential form are commonly used and are expressed here for a real-valued function
Fig 1. The top graph shows a non-periodic function s(x) in blue defined only over the red interval from 0 to P. The function can be analyzed over this interval to produce the Fourier series in the bottom graph. The Fourier series is always a periodic function, even if original function s(x) wasn't.
Clearly Eq.1 can represent functions that are just a sum of one or more of the harmonic frequencies. The remarkable thing, for those not yet familiar with this concept, is that it can also represent the intermediate frequencies and/or non-sinusoidal functions because of the potentially infinite number of terms (
).
Fig 2. The blue curve is the cross-correlation of a square wave and a cosine function, as the phase lag of the cosine varies over one cycle. The amplitude and phase lag at the maximum value are the polar coordinates of one harmonic in the Fourier series expansion of the square wave. The corresponding Cartesian coordinates can be determined by evaluating the cross-correlation at just two phase lags separated by 90º.
The coefficients
and
can be understood and derived in terms of the cross-correlation between
harmonic. It is also an example of deriving the maximum from just two samples, instead of searching the entire function. That is made possible by a trigonometric identity:
را میتوان از فرمولهای اویلر بدست آورد.
فوریه بر این باور بود که هرگونه تابع متناوب را میتوان به صورت جمعی از توابع سینوسی نوشت. این مطلب درست نیست. شرایط لازم برای هر تابع متناوب برای اینکه به صورت سری فوریه نوشته شود به صورت زیر است:
این رابطه با کمک فرمول اویلر قابل گسترش به صورت زیر است:
اگر این رابطه را بهطور مستقیم با نمایش مثلثی مقایسه کنیم مشاهده میشود که
به طریق زیر نیز قابل محاسبه است:
نمایش کسینوس-با-فاز
نمایش زیر که در واقع شکل ویژهای از نمایش مثلثی میباشد، نمایش کسینوس-با-فاز نام دارد. از این نمایش در رسم طیف خطی (به انگلیسی: line spectra) استفاده میشود.
محاسبه ضرایب فوریه
نمایش مثلثی
نمایش مثلثی بالا را در نظر بگیرید. همانطور که گفته شد
در کاربردهای مهندسی، بهطور کلی فرض میشود که سریهای فوریه تقریباً در همه جا همگرا شوند (استثنائاتی در ناپیوستگیهای گسسته وجود دارد) زیرا عملکردهایی که در مهندسی مشاهده میشوند رفتار بهتری نسبت به توابعی دارند که ریاضیدانان میتوانند به عنوان نمونههای متضاد این فرض ارائه دهند. بهطور خاص، اگر
پیوسته باشد و مشتق
(که ممکن است در همه جا وجود نداشته باشد) مربع انتگرال دار است، پس سریهای فوریه بهطور کامل و یکنواخت به
همگرا میشوند.
چهار جمع جزئی (سری فوریه) با طول ۱ ، ۲ ، ۳ و ۴ جمله ای، که نشان میدهد چگونه تقریب با یک موج مربعی با افزایش تعداد جملهها بهبود مییابد.
چهار مجموع جزئی (سری فوریه) با طول ۱ ، ۲ ، ۳ و ۴ جمله ای، که نشان میدهد چگونه تقریب با یک موج دندانه اره ای با افزایش تعداد جملهها بهبود مییابد.
نمونه ای از همگرایی به یک تابع نسبتاً دلخواه. به شکلگیری "طنین" (پدیده گیبس) در انتقال به بخشهای عمودی توجه کنید.
Extensions
Fourier series on a square
We can also define the Fourier series for functions of two variables
and
in the square
:
Aside from being useful for solving partial differential equations such as the heat equation, one notable application of Fourier series on the square is in image compression. In particular, the jpeg image compression standard uses the two-dimensional discrete cosine transform, a discrete form of the Fourier cosine transform, which uses only cosine as the basis function.
For two-dimensional arrays with a staggered appearance, half of the Fourier series coefficients disappear, due to additional symmetry.
Fourier series of Bravais-lattice-periodic-function
A three-dimensional Bravais lattice is defined as the set of vectors of the form:
where
are integers and
are three linearly independent vectors. Assuming we have some function,
, such that it obeys the condition of periodicity for any Bravais lattice vector
,
, we could make a Fourier series of it. This kind of function can be, for example, the effective potential that one electron "feels" inside a periodic crystal. It is useful to make the Fourier series of the potential when applying Bloch's theorem. First, we may write any arbitrary position vector
in the coordinate-system of the lattice:
where
meaning that
is defined to be the magnitude of
, so
is the unit vector directed along
.
Thus we can define a new function,
This new function,
, is now a function of three-variables, each of which has periodicity
,
, and
respectively:
This enables us to build up a set of Fourier coefficients, each being indexed by three independent integers
. In what follows, we use function notation to denote these coefficients, where previously we used subscripts. If we write a series for
on the interval
for
, we can define the following:
And then we can write:
Further defining:
We can write
once again as:
Finally applying the same for the third coordinate, we define:
We write
as:
Re-arranging:
Now, every reciprocal lattice vector can be written (but does not mean that it is the only way of writing) as
, where
are integers and
are reciprocal lattice vectors to satisfy
(
for
, and
for
). Then for any arbitrary reciprocal lattice vector
and arbitrary position vector
in the original Bravais lattice space, their scalar product is:
So it is clear that in our expansion of
, the sum is actually over reciprocal lattice vectors:
where
Assuming
we can solve this system of three linear equations for
,
, and
in terms of
,
and
in order to calculate the volume element in the original cartesian coordinate system. Once we have
,
, and
in terms of
,
and
, we can calculate the Jacobian determinant:
which after some calculation and applying some non-trivial cross-product identities can be shown to be equal to:
(it may be advantageous for the sake of simplifying calculations, to work in such a Cartesian coordinate system, in which it just so happens that
is parallel to the x axis,
lies in the xy-plane, and
has components of all three axes). The denominator is exactly the volume of the primitive unit cell which is enclosed by the three primitive-vectors
,
and
. In particular, we now know that
We can write now
as an integral with the traditional coordinate system over the volume of the primitive cell, instead of with the
,
and
variables:
writing
for the volume element
; and where
is the primitive unit cell, thus,
is the volume of the primitive unit cell.
Hilbert space interpretation
In the language of Hilbert spaces, the set of functions
is an orthonormal basis for the space
of square-integrable functions on
. This space is actually a Hilbert space with an inner product given for any two elements
and
by:
where
is the complex conjugate of
The basic Fourier series result for Hilbert spaces can be written as
Sines and cosines form an orthonormal set, as illustrated above. The integral of sine, cosine and their product is zero (green and red areas are equal, and cancel out) when
,
or the functions are different, and π only if
and
are equal, and the function used is the same.
This corresponds exactly to the complex exponential formulation given above. The version with sines and cosines is also justified with the Hilbert space interpretation. Indeed, the sines and cosines form an orthogonal set:
(where δmn is the Kronecker delta), and
furthermore, the sines and cosines are orthogonal to the constant function
. An orthonormal basis for
consisting of real functions is formed by the functions
and
,
with n= 1,2,.... The density of their span is a consequence of the Stone–Weierstrass theorem, but follows also from the properties of classical kernels like the Fejér kernel.
Table of common Fourier series
Some common pairs of periodic functions and their Fourier Series coefficients are shown in the table below.
designates a periodic function defined on
.
designate the Fourier Series coefficients (sine-cosine form) of the periodic function
↑Dorf, Richard C.; Tallarida, Ronald J. (1993). Pocket Book of Electrical Engineering Formulas (1st ed.). Boca Raton,FL: CRC Press. pp. 171–174. ISBN0849344735.
↑Tolstov, Georgi P. (1976). Fourier Series. Courier-Dover. ISBN0-486-63317-9.
↑ Papula, Lothar (2009). Mathematische Formelsammlung: für Ingenieure und Naturwissenschaftler [Mathematical Functions for Engineers and Physicists] (به آلمانی). Vieweg+Teubner Verlag. ISBN978-3834807571.
کتابشناسی
Yitzhak Katznelson, An introduction to harmonic analysis, Second corrected edition. Dover Publications, Inc. , New York, 1976. ISBN0-486-63331-4
Felix Klein, Development of mathematics in the 19th century. Mathsci Press Brookline, Mass, 1979. Translated by M. Ackerman from Vorlesungen uber die Entwicklung der Matematik im 19 Jahrhundert, Springer, Berlin, 1928.
Walter Rudin, Principles of mathematical analysis, Third edition. McGraw-Hill, Inc. , New York, 1976. ISBN0-07-054235-X
Kamen, Edward W.; Heck, Bonnie S. (2007). Signals And Systems. Prentice Hall. ISBN0-13-168737-9.