نظریه جبری اعداد
نظریه جبری اعداد (به انگلیسی: Algebraic Number Theory) (یا نظریه اعداد جبری)، شاخه ای از نظریه اعداد است که از تکنیک های جبر مجرد برای مطالعه اعداد صحیح، اعداد گویا و تعمیمشان استفاده می کند. سؤالات نظریه اعدادی بر اساس خواص اشیاء جبری چون میدان اعداد جبری و حلقه های اعداد صحیحشان، میدان های متناهی و میدان توابع بیان می شود. چنین خواصی مثل خاصیت تجزیه یکتایی یک حلقه، رفتار ایدهآلها و گروه های گالوای میدان ها می تواند مسائل مهم نظریه اعداد چون وجود جواب برای معادلات سیاله ای را حل کند.
تاریخچه نظریه جبری اعداد
دیوفانتوس
آغاز نظریه جبری اعداد به معادلات سیاله ای (یا دیوفانتینی) بر می گردد، نام این معادلات به ریاضیدان اهل اسکندریه قرن سوم میلادی یعنی دیوفانتوس بر می گردد، که این معادلات را مطالعه کرده و روش هایی برای حل برخی از انواع معادلات سیاله ای (یا دیوفانتینی) توسعه داد. یک مسئله سیاله ای عادی به این شکل است که باید دو عدد صحیح مثل
معادلات سیاله ای برای هزاران سال مطالعه شدند. به عنوان مثال، جواب معادله سیاله ای مربعی
بزرگترین کار دیوفانتوس اثری بود به نام Arithmetica که تنها بخشی از آن باقی مانده است.
فرما
قضیه آخر فرما اولین حدسی بود که توسط پیر د فرما در ۱۶۳۷ زده شد. مشهور است که فرما آن را در حاشیه کتاب Arithmetica یادداشت کرد و در آنجا ادعا می کند که اثباتی برای آن دارد که به خاطر بزرگ بودنش در حاشیه کتاب جا نمیشود. تا سال ۱۹۹۵ با وجود تلاش های فراوان بسیاری از ریاضیدانان در طی ۳۵۸ سال هیچ اثباتی برای این حدس منتشر نشد. این مسئله حل نشده موجب تحریک توسعه نظریه جبری اعداد در قرن نوزدهم میلادی شده و اثبات قضیه مدولاریتی را در قرن بیستم رقم زد.
گاوس
یکی از کار های بنیادین در نظریه جبری اعداد، کتابی با نام تحقیقاتی در حساب (با عنوان لاتین: Disquisitiones Arithmeticae) است که به زبان لاتین توسط کارل فردریش گاوس در ۱۷۹۸ نوشته شد، زمانی که او ۲۱ ساله بود و اولین چاپش مربوط به ۱۸۰۱ زمانی که او ۲۴ ساله بود صورت گرفت. در این کتاب، گاوس نتایج مختلف در نظریه اعداد را که توسط ریاضیدانانی چون فرما، اویلر، لاگرانژ و لژاندر بدست آمده بودند را گرد هم آورده و نتایج مهم جدیدی از خودش نیز بدان افزود. قبل از این که این کتاب منتشر شود، نظریه اعداد عمدتاً شامل مجموعه ای از قضایا و حدس های منزوی بود. گاوس کارهای پیشینیان خود را به همراه کار اصیل خویش گرد هم آورد و در یک چارچوب نظام مند، شکاف ها را پر کرده، اثبات های بی معنا را معنا بخشید و موضوع مورد نظر را به طرق مختلف گسترش داد.
کتاب Disquisitiones نقطه شروعی برای کار های دیگر ریاضیدانانی چون ارنست کومر، پیتر گوستاف لوژون دیریکله و ریچارد ددکیند در قرن نوزدهم بود. بسیاری از تفاسیری که توسط گاوس داده شده نشان از تحقیقات بیشتر او بود که برخی از آن ها منتشر نشده باقی ماندند. این تفاسیر نزد هم عصران وی حالت رمزی داشت؛ البته امروزه ما متوجه نکات او می شویم، به طور خاص نطفه مباحثی چون L-توابع و ضرب مختلط.
دیریکله
پیتر گوستاف لژیونه دیریکله در دو مقاله در سال های ۱۸۳۸ و ۱۸۳۹ اولین فرمول های کلاس اعداد را برای فرم های مربعی اثبات کرد (بعد ها توسط دانشجویش به نام لئوپولد کرونکر این فرمول ها پالایش شدند). این فرمول که ژاکوبی از آن به نتیجه ای که "منتهای فراست بشریت را لمس می کند" یاد کرد، راهی را برای نتایج مشابه با توجه به میدان های عددی عمومی تر باز کرد. بر اساس تحقیق او در مورد ساختار گروه عناصر معکوس پذیر میدان های مربعی، او قضیه یکه (عناصر معکوس پذیر) دیریکله را اثبات کرد که نتیجه بنیادینی در نظریه جبری اعدادست.
او ابتدا از اصل لانه کبوتری که یک استدلال مقدماتی شمارشی است، در اثباتش از قضیه ای در تخمین سیاله ای استفاده کرد که بعد ها به نام او نامگذاری شد (قضیه تخمین دیریکله). او کمک های مهمی به قضیه آخر فرما با اثبات حالات
ددکیند
مطالعه ی ریچارد ددکیند بر روی کار های لژیونه دیریکله منجر شد به این که او بعد ها به مطالعه نظریه جبری اعداد و ایدهآل ها بپردازد. در ۱۸۶۳، او درسنامه های لژیونه دیریکله در مورد نظریه اعداد را با نام Vorlesungen über Zahlentheorie ("درسنامه هایی در مورد نظریه اعداد") منتشر کرد که در مورد آن چنین نوشته اند:
"گرچه که این کتاب بدون شک براساس درسنامه های دیریکله بنا شده است، و گرچه که خود ددکیند در کل عمر خود به آن کتاب دیریکله می گفت، خود این کتاب تماماً توسط ددکیند نوشته شده است، و بخش های عمده آن پس از مرگ دیریکله نوشته شده." (Edwards 1983)
ویرایش های ۱۸۷۹ و 1894 Vorlesungen شامل اضافاتی مربوط به توضیح مفهوم ایدهآل ها، که در نظریه حلقه ها نقش اساسی دارند می باشد. (کلمه "حلقه"، بعد ها توسط هیلبرت معرفی شده و در کار های ددکیند دیده نمیشود.) ددکیند یک ایدهآل را به عنوان زیر مجموعه ای از اعداد می دید، که شامل اعداد صحیح جبری ای می شود که در معادلات چند جمله ای با ضرایب صحیح صدق می کنند. این مفهوم بدست هیلبرت و بهخصوص امی نوتر بیشتر توسعه یافت. ایدهآل ها، اعداد ایدهآل ارنست ادوارد کومر را تعمیم می دهد، مفهومی (اعداد ایدهآل) که کومر در تلاشش به هدف اثبات آخرین قضیه فرما در ۱۸۴۳ خلق کرد.
هلیبرت
دیوید هیلبرت با رساله Zahlbericht (معنی تحتاللفظی آن می شود "گزارشی در مورد اعداد") خود در سال ۱۸۹۷، شاخه نظریه جبری اعداد را متحد ساخت. او همچنین مسئله مهم نظریه اعدادی که Waring در ۱۷۷۰ فرموله کرده بود را حل کرد. با قضیه متناهی بودن خود، از یک اثبات وجودی استفاده کرد که نشان می داد باید راه حل هایی برای این مسئله وجود داشته باشد، نه صرفاً مکانیسمی برای تولید جواب ها.
او یک سری حدس ها در مورد نظریه کلاس میدانی (Class Field Theory) مطرح کرد. این مفاهیم بسیار تأثیرگذار بودند و نامش بر خدماتی که به این زمینه ها کرد ماندنی شد، مثل کلاس میدانی هیلبرت و نماد هیلبرت از نظریه کلاس میدانی موضعی. این نتایج اغلب در ۱۹۳۰، پس از کار با تیجی تاکاگی اثبات شدند.
آرتین
امیل آرتین قانون تقابل آرتینی را در یک سری مقالات (۱۹۲۴؛ ۱۹۲۷؛ ۱۹۳۰) بنا نهاد. این قانون یک قضیه کلی در نظریه اعداد است که جایگاهی مرکزی در نظریه کلاس میدانی سرتاسری دارد. عبارت "قانون تقابل" به خطی طولانی از احکام ملموس تر نظریه اعدادی اشاره می کند که این قانون (تقابل آرتینی) آن ها را تعمیم می دهد، از قانون تقابل مربعی و قوانین تقابل آیزنشتاین و کومر گرفته تا فرمول ضرب هیلبرت برای نماد نرم. نتیجه آرتین یک حل جزئی برای مسئله نهم هیلبرت ارائه داد.
نظریه مدرن
حدود ۱۹۵۵، ریاضیدانان ژاپنی به نام گورو شیمورا و یاتوکا تانیاما یک ارتباط ممکن بین دو شاخه به ظاهر کاملاً مجزای ریاضیات، یعنی خم های بیضوی و فرم های مدولار را مشاهده کردند. قضیه مدولاریتی حاصل (در آن زمان معروف به حدس تانیاما-شیمورا بود) بیان می کند که هر خم بیضوی مدولار است، یعنی به آن یک فرم مدولار یکتا را می توان نظیر کرد.
ابتدا به این حدس توجهی نشد یا ریسک آن بالا در نظر گرفته می شد، ولی زمانی که آندره ویل برخی مدارک پشتیبانی کننده برای آن یافت، جدی تر تلقی شد، اما هنوز اثبات نشده بود، به گونه ای که این حدس "شگفت انگیز" خوانده شد و به نام حدس تانیاما-شیمورا-ویل شناخته شد. سپس جزوی از برنامه لنگلندز قرار گرفت، این برنامه لیستی از حدس هایی بود که نیاز به اثبات یا رد داشتند.
اندرو وایلز از ۱۹۹۳ تا ۱۹۹۴ اثبات قضیه مدولاریتی برای خم های بیضوی نیمه-پایا ارائه کرد، که همراه با قضیه Ribet، اثباتی برای قضیه آخر فرما ارائه می نمود. تقریباً همه ریاضیدانان زمانه پیش از آن اثبات هردو قضیه آخر فرما و قضیه مدولاریتی را حتی زمانی که مهم ترین پیشرفت ها در این زمینه ها حاصل می شد، یا غیر ممکن یا مجازاً غیر ممکن در نظر می گرفتند. وایلز، اولین بار اثبات خود را در ژوئن سال ۱۹۹۳ میلادی اعلام کرد. اما به زودی مشخص شد که این نسخه از اثبات در نقاط کلیدی اش شکاف های بزرگی دارد. سپس وایلز با همکاری ریچارد تیلور این شکاف را تصحیح کرده و نتیجه نهایی پذیرفته شده در سپتامبر ۱۹۹۴ بیرون داده شد و به طور رسمی در ۱۹۹۵ منتشر شد. اثبات آن از بسیاری از تکنیک های هندسه جبری، نظریه جبری اعداد و بسیاری از انشعابات این دو شاخه از ریاضیات استفاده می کند. همچنین از سازه های هندسه جبری مدرن، چون رسته اسکیم ها و قضیه ایواساوا و تکنیک های قرن بیستمی که در دسترس فرما نبود نیز استفاده می کند.
مفاهیم پایه
نقض تجزیه یکتا
یک خاصیت مهم حلقه اعداد صحیح، ارضاء قضیه اساسی حساب است، یعنی هر عدد صحیح (مثبت) را می توان به صورت ضرب عوامل اولش تجزیه کرد، و این تجزیه در حد ترتیب عوامل یکتاست. اما این خاصیت ممکن است برای حلقه اعداد صحیح جبری
یک عنصر اول، عنصری چون
در کل، اگر
که اثبات می کند در
به هر حال، حتی با این تعریف ضعیف تر، بسیاری از حلقه های اعداد صحیح در میدان های عددی جبری هم خاصیت تجزیه یکتایی را دارا نیستند. یک مانع به نام گروه کلاس ایدهآل ها وجود دارد. زمانی که گروه کلاس ایدهآل در یک میدان اعداد بدیهی باشد، این حلقه (حلقه اعداد صحیح جبری یا
این معادله نشان می دهد که ۳ حاصلضرب
تجزیه به ایدهآلهای اول
اگر
که در آن هر
زمانی که
به طور تاریخی، ایده تجزیه ایدهآل ها به ایدهآل های اول، قبل از معرفی اعداد ایدهآل توسط ارنست کومر معرفی شد. این ها اعدادی هستند که در یک توسیع میدانی
ایدهآلی که در حلقه اعداد صحیح جبری یک میدان عددی اول باشد، ممکن است هنگام توسیع به میدان عددی بزرگتر دیگر اول نباشد. مثلاً، اعداد اول را در نظر بگیرید. ایدهآل های متناظرشان یعنی
توجه کنید که
گروه کلاس ایدهآلی
تجزیه یکتا نقض می شود اگر و تنها اگر ایدهآلهای اول غیر اصلی وجود داشته باشند. گروه کلاس ایدهآلی شیئیست که میزان نقض (انحراف از) اصلی بودن یک ایدهآل را اندازه گیری می کند. تعریف گروه کلاس ایدهآلی نیازمند بزرگ کردن مجموعه ایدهآل های اعداد صحیح جبری است، چنان که ساختار گروهی بپذیرند. این عمل با تعمیم ایدهآل ها به ایدهآل های کسری امکان پذیر است. یک ایدهآل کسری زیرگروهی جمعی چون
ایدهآل های کسری اصلی، یعنی آن ها که به شکل
منابع و ارجاعات
- ↑ Stark, pp. 145–146.
- ↑ Aczel, pp. 14–15.
- ↑ Stark, pp. 44–47.
- ↑ Disquisitiones Arithmeticae at Yalepress.yale.edu
- ↑ Elstrodt, Jürgen (2007). "The Life and Work of Gustav Lejeune Dirichlet (1805–1859)" (PDF). Clay Mathematics Proceedings. Retrieved 2007-12-25.
- ↑ Kanemitsu, Shigeru; Chaohua Jia (2002). Number theoretic methods: future trends. Springer. pp. 271–274. ISBN 978-1-4020-1080-4.
- ↑ Reid, Constance, 1996. Hilbert, Springer, شابک ۰−۳۸۷−۹۴۶۷۴−۸.
- ↑ این کار، تاکاگی را به عنوان اولین ژاپنی در قامت یک ریاضیدان بینالمللی مطرح ساخت
- ↑ Helmut Hasse, History of Class Field Theory, in Algebraic Number Theory, edited by Cassels and Frölich, Academic Press, 1967, pp. 266–279
- ↑ Fermat's Last Theorem (book), Simon Singh, 1997, شابک ۱−۸۵۷۰۲−۵۲۱−۰>
- ↑ Kolata, Gina (24 June 1993). "At Last, Shout of 'Eureka!' In Age-Old Math Mystery". The New York Times. Retrieved 21 January 2013.
- Neukirch, Jürgen; Schmidt, Alexander; Wingberg, Kay (2000). Cohomology of Number Fields. Grundlehren der Mathematischen Wissenschaften. Vol. 323. Springer-Verlag. ISBN 978-3-540-66671-4. MR 1737196. Zbl 0948.11001.
برای مطالعه بیشتر
متون مقدماتی
- Stein, William (2012). Algebraic Number Theory, A Computational Approach. Retrieved from https://wstein.org/books/ant/ant.pdf
- Ireland, Kenneth and Rosen, Michael (2013). A classical introduction to modern number theory (Vol. 84). Springer Science & Business Media. doi:10.1007/978-1-4757-2103-4
- Stewart, Ian and Tall, David (2015). Algebraic number theory and Fermat's last theorem. CRC Press.
متون متوسط
- Marcus, Daniel A. (1977). Number fields (Vol. 8). New York: Springer.
متون تحصیلات تکمیلی
- Cassels, J. W. S.; Fröhlich, Albrecht, eds. (1967), Algebraic number theory, London: Academic Press, MR 0215665
- Fröhlich, Albrecht; Taylor, Martin J. (1993), Algebraic number theory, Cambridge Studies in Advanced Mathematics, vol. 27, Cambridge University Press, ISBN 0-521-43834-9, MR 1215934
- Lang, Serge (1994), Algebraic number theory, Graduate Texts in Mathematics, vol. 110 (2 ed.), New York: Springer-Verlag, ISBN 978-0-387-94225-4, MR 1282723
- Neukirch, Jürgen (1999). Algebraic Number Theory. Grundlehren der Mathematischen Wissenschaften. Vol. 322. Springer-Verlag. ISBN 978-3-540-65399-8. Zbl 0956.11021.