ماتریس ژاکوبی
در حساب برداری، ماتریس ژاکوبی (به انگلیسی: Jacobian matrix) از یک تابع برداری-مقدار از چندین متغیر برابر ماتریسی از همه مشتقهای جزئی درجه اول آن است. وقتیکه ماتریس مربعی باشد، یعنی، وقتیکه تابع همان تعداد متغیر را به عنوان ورودی بپذیرد که تعداد مولفههای برداری خروجیاش است، به دترمینان آن دترمینان ژاکوبی گفته میشود. در متون هم به خود ماتریس و هم به دترمینان به سادگی ژاکوبی هم گفته میشود.
ماتریس ژاکوبی، نامیده شده به اسم ریاضیدان آلمانی: کارل گوستاو ژاکوب ژاکوبی، ماتریسی است که در آن تمام مشتقهای جزئی مرتبه اول یک تابع چند متغیره
تعریف
اگر
چند مثال
مثال ۱: تابع
که در آن
و
ماتریس ژاکوبی F چنین است:
و دترمینان ژاکوبی:
مثال ۲: ماتریس ژاکوبی تابع F : R → R شامل:
چنین است:
این مثال همچنین نشان میدهد که ماتریس ژاکوبی لزوماً نباید مربعی باشد.
کاربردها
از مهمترین استفادههای این ماتریس، دترمینان آن است (مسلماً در صورتی که ماتریس، مربعی باشد) که در محاسبه انتگرالهای چند بعدی، مورد استفاده قرار میگیرد. به این روش، روش تغییر متغیر در محاسبه انتگرالها گفته میشود.
منابع بیشتر:فصل های۱۴_۱۶ ریاضیات توماس
- ↑ W., Weisstein, Eric. "Jacobian". mathworld.wolfram.com. Archived from the original on 3 November 2017. Retrieved 2 May 2018.