سلول خورشیدی پروسکایت
سلول خورشیدی پروسکایت (به انگلیسی: Perovskite solar cell) نوعی سلول خورشیدی که شامل ترکیبی با ساختار پروسکایت میشود. این ماده غالباً هیبرید آلی-معدنی هالید سرب یا قلع است. مواد پروسکایت مانند متیل آمونیوم سرب یدید و یا ماده معدنی سزیم سرب یدید، ارزان بوده و فرایند ساخت آسانی دارند.
بازده این سلولها از ۳.۸٪ در سال ۲۰۰۹ تا ۲۲.۷٪ در سال ۲۰۱۷ برای سلولهای تک اتصاله، ۲۶.۷٪ و ۲۵.۲٪ به ترتیب برای سلولهای تندم با سیلیکون با آرایش ۴ و ۲ ترمیناله، افزایش یافتهاست. بدین ترتیب سلولهای خورشیدی پروسکایت، سریعترین فناوری خورشیدی تا به امروز بودهاند. به دلیل پتانسیل این فناوری در دستیابی به بازدههای بیشتر و هزینهٔ ساخت پایینتر، این سلولها توجه زیادی را از نظر تجاری به خود جلب کردهاند.
ویژگیها
پروسکایتهای هالید فلزی دارای ویژگیهای منحصر به فردی هستند که استفاده از آنها در سلولهای خورشیدی را توجیه میکند. مواد خام استفاده شده و نیز روشهای ساخت این مواد (مانند پرینت)، هر دو ارزان و کم هزینه هستند. از سوی دیگر ضریب جذب زیاد این مواد، امکان استفاده از فیلمهایی با ضخامت کم (حدود ۵۰۰ نانومتر) را ممکن میسازد. به عبارت دیگر، برای جذب کامل نور مرئی تنها به یک فیلم چند صد نانومتری از پروسکایت نیاز است. ترکیب این ویژگیها، امکان ساخت ماژولهای خورشیدی ارزان، پربازده، نازک، سبک و انعطافپذیر را فراهم میسازد.
در سالهای اولیه تحقیق بر روی این نوع سلولها، چالش بزرگ این بود که بزرگترین سلولهای خورشیدی پروسکایت، به اندازه یک بند انگشت بوده و از سوی دیگر به سرعت نیز در رطوبت هوا تجزیه میشدند. در سال ۲۰۱۷، محققان دانشگاه پلیتکنیک فدرال لوزان در مقالهای، ساخت ماژولی در ابعاد بزرگ را گزارش کردند که در مدت یک سال بدون هیچ تغییر قابل مشاهدهای پایدار باقی مانده بود. در حال حاضر، این گروه همراه با نهادهای دیگر، در حال توسعه ساخت سلولهای خورشیدی پروسکایت قابل پرینت با بازده ۲۲٪ هستند که پس از انجام تستهای پایداری بتواند ۹۰٪ بازدهی خود را حفظ کند.
مواد
نام سلول خورشیدی پروسکایت از ساختار کریستالی
فرآوری
یکی از مزیتهای سلولهای خورشیدی پروسکایت نسبت به سلولهای خورشیدی سیلیکنی، فراوری آسان آنهاست. ساخت سلولهای خورشیدی سیلیکنی معمولاً طی فرایندهای چند مرحلهای و گرانی انجام میشود که عمدتاً نیاز به دماهای زیاد (بیش از ۱۰۰۰ درجه سانتیگراد)، خلأ بالا و تجهیزات اتاق تمیز دارند. در حالیکه مواد پروسکایت آلی معدنی با روشهای آسانتر و در محیط آزمایشگاهی قابل ساخت هستند. تا کنون روشهای مختلفی بر پایهٔ محلول و نیز بخار برای ساخت این سلولها استفاده شدهاست. هر دو نوع این روشها، پتانسیل ساخت سلول در ابعاد بزرگ را دارا هستند.
در فرایند یک مرحلهای بر پایهٔ محلول، سرب هالید و متیل آمونیوم هالید در یک حلال حل شده و سپس بر روی زیرلایه به روش پوشش دورانی، نشانده میشود. پس از تبخیر حلال، لایهای پکیده و کریستالی شده، باقی میماند. روش پوششدهی دورانی به تنهایی منجر به ایجاد لایهای یکنواخت نمیشود بلکه نیاز به مواد شیمیایی دیگری مانند گامابوتیرولاکتون، دیمتیل سولفواکسید و یا تولوئن نیز است. بدون ریختن قطراتی از این مواد بر روی فیلم در حال دوران، فیلم نهایی دارای حفرهها و نقایصی خواهد بود که در نهایت بازدهی سلول را کاهش میدهد.
در روشهای مبتنی بر فاز بخار، فیلم هالید فلزی در حضور بخار متیل آمونیوم یدید در دمای حدود ۱۵۰ درجه سانتیگراد آنیل میشود. در چنین روشهایی، فیلم نهایی یکنواختی بیشتری از نظر ضخامت نسبت به روشهای مبتنی بر محلول دارد.
هر دوی این فرایندها هزینه و پیچیدگی کمتری نسبت به فرایندهای ساخت سلول خورشیدی سیلیکنی دارند. روشهای تبخیری یا به کمک فاز بخار نیاز به استفاده از حلال را کاهش داده و خطر باقی ماندن حلال در فیلم نهایی را از بین میبرند. در حالیکه، روشهای مبتنی بر محلول ارزانتر هستند. مشکل اصلی در زمینهٔ ساخت سلول خورشیدی پروسکایت، عدم پایداری این ماده در شرایط استاندارد محیطی است که منجر به کاهش بازدهی این سلولها میشود.
فیزیک
یکی از مهمترین مشخصههای پروسکایتها، قابلیت تنظیم گاف انرژی با تغییر مقدار و نسبت هالید است. همچنین این مواد دارای طول دیفیوژنی از مرتبهٔ یک میکرون، برای الکترون و چند صد نانومتر برای حفره هستند. طول دیفیوژن بزرگ به این معناست که بارها میتوانند در طول خود فیلم پروسکایت در فواصل بزرگ جابهجا شوند. از اینرو میتوان از این مواد در ساختار سلولهای خورشیدی لایه نازک نیز استفاده نمود. به دلیل انرژی پیوند اکسیتون کم این مواد، بارها در این مواد غالباً به صورت الکترون آزاد و حفره هستند.
ساختار و معماری سلولها
سلولهای خورشیدی پروسکایت بسته به نوع نقش پروسکایت در سلول و یا ماهیت الکترودهای بالایی و پایینی، در ساختارهای متفاوتی ساخته میشوند. سلولهایی که در آن بارهای منفی توسط الکترود شفاف پایینی (آند) استخراج میشوند را میتوان به دو دسته "حساس شده" که در آن پروسکایت عمدتاً نقش جاذب نور را داشته و بارها توسط مادهٔ دیگری جمعآوری میشوند، و "لایه نازک" که در آن ترابرد الکترون و یا حفره درون بالک پروسکایت انجام میشود، تقسیم کرد. در نوع اول، مشابه فرایند حساس سازی در سلولهای خورشیدی رنگدانهای، پروسکایت به عنوان جاذب بر روی فیلم نیمرسانای مزومتخلخل - غالباً
دستهٔ دیگری از سلولهای خورشیدی پروسکایت نیز وجود دارد که در آن الکترود شفاف پایینی به عنوان کاتد عمل کرده و بارهای مثبت را جمعآوری میکند.
تاریخچه
اولین استفاده از مواد پروسکایت در سلولهای خورشیدی در سال ۲۰۰۹ توسط میاساکا و همکارانش گزارش شد. این سلول در ساختار مشابه سلولهای خورشیدی رنگدانهای ساخته شده بود و تنها ۳.۸٪ بازده داشت. علاوه بر آن به دلیل وجود الکترولیت خورنده، این سلول تنها در بازۀ زمانی از مرتبه دقیقه پایدار بود. در سال ۲۰۱۱، پارک و همکارانش با استفاده از ساختاری مشابه به بازده ۶.۵٪ رسیدند.
موفقیت بزرگ در این زمینه زمانی حاصل شد که هنری اسنیت و مایک لی از دانشگاه آکسفورد دریافتند که پروسکایت در مجاورت یک رسانای حفره حالت جامد مانند اسپایروامتد پایدار است و از سوی دیگر برای ترابرد بار نیازی به لایه مزومتخلخل
در سال ۲۰۱۴، طیفی از روشهای لایهنشانی جدید و بازدههای بیشتر گزارش شدند. به عنوان نمونه یانگ یانگ از دانشگاه کالیفرنیا، لسآنجلس با استفاده از ساختار صفحهای لایه نازک به بازده ۱۹.۳٪ دست یافت. در نوامبر سال ۲۰۱۴ سلول ساخته شده توسط دانشگاه علوم و فناوری کره (KRICT) به بازده ۲۰.۱٪ رسید.
در دسامبر سال ۲۰۱۵، یک رکورد جدید در بازده این نوع سلولها گزارش شد. محققان دانشگاه پلیتکنیک فدرال لوزان به بازده ۲۱٪ رسیدند.
در سال ۲۰۱۶ رکورد بازدهی این سلولها توسط محققان دانشگاه علوم و فناوری کره (KRICT) و مؤسسه علوم و فنون ملی اولسان (UNIST) به ۲۲.۱٪ افزایش یافت.
در حال حاضر بیشترین بازده گزارش شده برای این سلولها، ۲۲.۷٪ است.
پایداری
چالش بزرگ سلولهای خورشیدی پروسکایت، پایداری آنها است. ناپایداری این سلولها عمدتاً مربوط به تأثیر شرایط محیطی (رطوبت و اکسیژن)، دمایی (ناپایداری ذاتی)، پتانسیل اعمالی، نور (نور فرابنفش و مرئی) و نیز شکنندگی مکانیکی است. مطالعات زیادی در مورد پایداری این سلولها انجام شده و به نظر میرسد برخی از این عوامل مهمتر از باقی عوامل هستند. با این حال پروتکل استانداردی برای تعیین پایداری این سلولها در شرایط کار (هنگامی که سلول در حال استفاده است) وجود ندارد. اخیراً روشی برای کمیکردن پایداری ذاتی شیمیایی پروسکایتها پیشنهاد شدهاست.
جستارهای وابسته
- ساختار پروسکایت
- انرژی خورشیدی
- انرژی حرارتی خورشیدی
- توان خورشیدی
- صفحه خورشیدی
- سلول فوتوالکتروشیمیایی
- سلول خورشیدی رنگ-حساس
- اثر فوتوولتاییک
- اثر ترموالکتریک
- اثر فوتوالکتریک
منابع
- ↑ Kojima, Akihiro; Teshima, Kenjiro; Shirai, Yasuo; Miyasaka, Tsutomu (2009-05-06). "Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells". Journal of the American Chemical Society (به انگلیسی). 131 (17): 6050–6051. doi:10.1021/ja809598r. ISSN 0002-7863.
- ↑ Ramírez Quiroz, César Omar; Shen, Yilei; Salvador, Michael; Forberich, Karen; Schrenker, Nadine; Spyropoulos, George D.; Heumüller, Thomas; Wilkinson, Benjamin; Kirchartz, Thomas (2018). "Balancing electrical and optical losses for efficient 4-terminal Si–perovskite solar cells with solution processed percolation electrodes". Journal of Materials Chemistry A (به انگلیسی). 6 (8): 3583–3592. doi:10.1039/c7ta10945h. ISSN 2050-7488.
- ↑ Sahli, Florent; Werner, Jérémie; Kamino, Brett A.; Bräuninger, Matthias; Monnard, Raphaël; Paviet-Salomon, Bertrand; Barraud, Loris; Ding, Laura; Diaz Leon, Juan J. (2018-06-11). "Fully textured monolithic perovskite/silicon tandem solar cells with 25.2% power conversion efficiency". Nature Materials (به انگلیسی). 17 (9): 820–826. doi:10.1038/s41563-018-0115-4. ISSN 1476-1122.
- ↑ Razza, Stefano; Castro-Hermosa, Sergio; Di Carlo, Aldo; Brown, Thomas M. (2016). "Research Update: Large-area deposition, coating, printing, and processing techniques for the upscaling of perovskite solar cell technology". APL Materials (به انگلیسی). 4 (9): 091508. doi:10.1063/1.4962478. ISSN 2166-532X.
- ↑ Yin, Wan-Jian; Shi, Tingting; Yan, Yanfa (2014-05-15). "Unique Properties of Halide Perovskites as Possible Origins of the Superior Solar Cell Performance". Advanced Materials (به انگلیسی). 26 (27): 4653–4658. doi:10.1002/adma.201306281. ISSN 0935-9648.
- ↑ Grancini, G.; Roldán-Carmona, C.; Zimmermann, I.; Mosconi, E.; Lee, X.; Martineau, D.; Narbey, S.; Oswald, F.; De Angelis, F. (2017-06-01). "One-Year stable perovskite solar cells by 2D/3D interface engineering". Nature Communications. 8. doi:10.1038/ncomms15684. ISSN 2041-1723. PMC 5461484. PMID 28569749.
- ↑ «The New Generation of Photovoltaic Cells Entering the Market». projects.leitat.org (به انگلیسی). دریافتشده در ۲۰۱۸-۱۰-۲۹.
- ↑ Chung, In; Lee, Byunghong; He, Jiaqing; Chang, Robert P. H.; Kanatzidis, Mercouri G. (2012). "All-solid-state dye-sensitized solar cells with high efficiency". Nature (به انگلیسی). 485 (7399): 486–489. doi:10.1038/nature11067. ISSN 0028-0836.
- ↑ Noel, Nakita K.; Stranks, Samuel D.; Abate, Antonio; Wehrenfennig, Christian; Guarnera, Simone; Haghighirad, Amir-Abbas; Sadhanala, Aditya; Eperon, Giles E.; Pathak, Sandeep K. (2014). "Lead-free organic–inorganic tin halide perovskites for photovoltaic applications". Energy Environ. Sci. (به انگلیسی). 7 (9): 3061–3068. doi:10.1039/c4ee01076k. ISSN 1754-5692.
- ↑ Hao, Feng; Stoumpos, Constantinos C.; Cao, Duyen Hanh; Chang, Robert P. H.; Kanatzidis, Mercouri G. (2014-05-04). "Lead-free solid-state organic–inorganic halide perovskite solar cells". Nature Photonics (به انگلیسی). 8 (6): 489–494. doi:10.1038/nphoton.2014.82. ISSN 1749-4885.
- ↑ Saidaminov, Makhsud I.; Abdelhady, Ahmed L.; Murali, Banavoth; Alarousu, Erkki; Burlakov, Victor M.; Peng, Wei; Dursun, Ibrahim; Wang, Lingfei; He, Yao (2015-07-06). "High-quality bulk hybrid perovskite single crystals within minutes by inverse temperature crystallization". Nature Communications. 6. doi:10.1038/ncomms8586. ISSN 2041-1723. PMC 4544059. PMID 26145157.
- ↑ Snaith, Henry J. (2013-10-14). "Perovskites: The Emergence of a New Era for Low-Cost, High-Efficiency Solar Cells". The Journal of Physical Chemistry Letters (به انگلیسی). 4 (21): 3623–3630. doi:10.1021/jz4020162. ISSN 1948-7185.
- ↑ Jeon, Nam Joong; Noh, Jun Hong; Kim, Young Chan; Yang, Woon Seok; Ryu, Seungchan; Seok, Sang Il (2014-07-06). "Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells". Nature Materials (به انگلیسی). 13 (9): 897–903. doi:10.1038/nmat4014. ISSN 1476-1122.
- ↑ Chen, Qi; Zhou, Huanping; Hong, Ziruo; Luo, Song; Duan, Hsin-Sheng; Wang, Hsin-Hua; Liu, Yongsheng; Li, Gang; Yang, Yang (2013-12-27). "Planar Heterojunction Perovskite Solar Cells via Vapor-Assisted Solution Process". Journal of the American Chemical Society (به انگلیسی). 136 (2): 622–625. doi:10.1021/ja411509g. ISSN 0002-7863.
- ↑ Eperon, Giles E.; Stranks, Samuel D.; Menelaou, Christopher; Johnston, Michael B.; Herz, Laura M.; Snaith, Henry J. (2014). "Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells". Energy & Environmental Science (به انگلیسی). 7 (3): 982. doi:10.1039/c3ee43822h. ISSN 1754-5692.
- ↑ Stranks, Samuel D.; Eperon, Giles E.; Grancini, Giulia; Menelaou, Christopher; Alcocer, Marcelo J. P.; Leijtens, Tomas; Herz, Laura M.; Petrozza, Annamaria; Snaith, Henry J. (2013-10-18). "Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber". Science (به انگلیسی). 342 (6156): 341–344. doi:10.1126/science.1243982. ISSN 0036-8075. PMID 24136964.
- ↑ Liu, Shuhao; Wang, Lili; Lin, Wei-Chun; Sucharitakul, Sukrit; Burda, Clemens; Gao, Xuan P. A. (2016-12-05). "Imaging the Long Transport Lengths of Photo-generated Carriers in Oriented Perovskite Films". Nano Letters (به انگلیسی). 16 (12): 7925–7929. doi:10.1021/acs.nanolett.6b04235. ISSN 1530-6984.
- ↑ Xiao, Zhengguo; Bi, Cheng; Shao, Yuchuan; Dong, Qingfeng; Wang, Qi; Yuan, Yongbo; Wang, Chenggong; Gao, Yongli; Huang, Jinsong (2014). "Efficient, high yield perovskite photovoltaic devices grown by interdiffusion of solution-processed precursor stacking layers". Energy Environ. Sci. (به انگلیسی). 7 (8): 2619–2623. doi:10.1039/c4ee01138d. ISSN 1754-5692.
- ↑ Im, Jeong-Hyeok; Lee, Chang-Ryul; Lee, Jin-Wook; Park, Sang-Won; Park, Nam-Gyu (2011). "6.5% efficient perovskite quantum-dot-sensitized solar cell". Nanoscale (به انگلیسی). 3 (10): 4088. doi:10.1039/c1nr10867k. ISSN 2040-3364.
- ↑ Lee, Michael M.; Teuscher, Joël; Miyasaka, Tsutomu; Murakami, Takurou N.; Snaith, Henry J. (2012-11-02). "Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites". Science (به انگلیسی). 338 (6107): 643–647. doi:10.1126/science.1228604. ISSN 0036-8075. PMID 23042296.
- ↑ Zhou, Huanping; Chen, Qi; Li, Gang; Luo, Song; Song, Tze-bing; Duan, Hsin-Sheng; Hong, Ziruo; You, Jingbi; Liu, Yongsheng (2014-08-01). "Interface engineering of highly efficient perovskite solar cells". Science (به انگلیسی). 345 (6196): 542–546. doi:10.1126/science.1254050. ISSN 0036-8075. PMID 25082698.
- ↑ «NREL efficiency chart».
- ↑ Bryant, Daniel; Aristidou, Nicholas; Pont, Sebastian; Sanchez-Molina, Irene; Chotchunangatchaval, Thana; Wheeler, Scot; Durrant, James R.; Haque, Saif A. (2016). "Light and oxygen induced degradation limits the operational stability of methylammonium lead triiodide perovskite solar cells". Energy & Environmental Science (به انگلیسی). 9 (5): 1655–1660. doi:10.1039/c6ee00409a. ISSN 1754-5692.
- ↑ Chun-Ren Ke, Jack; Walton, Alex S.; Lewis, David J.; Tedstone, Aleksander; O'Brien, Paul; Thomas, Andrew G.; Flavell, Wendy R. (2017). "In situ investigation of degradation at organometal halide perovskite surfaces by X-ray photoelectron spectroscopy at realistic water vapour pressure". Chemical Communications (به انگلیسی). 53 (37): 5231–5234. doi:10.1039/c7cc01538k. ISSN 1359-7345.
- ↑ Juarez-Perez, Emilio J.; Hawash, Zafer; Raga, Sonia R.; Ono, Luis K.; Qi, Yabing (2016). "Thermal degradation of CH3NH3PbI3 perovskite into NH3 and CH3I gases observed by coupled thermogravimetry–mass spectrometry analysis". Energy & Environmental Science (به انگلیسی). 9 (11): 3406–3410. doi:10.1039/c6ee02016j. ISSN 1754-5692.
- ↑ Yuan, Yongbo; Wang, Qi; Shao, Yuchuan; Lu, Haidong; Li, Tao; Gruverman, Alexei; Huang, Jinsong (2015-12-02). "Electric-Field-Driven Reversible Conversion Between Methylammonium Lead Triiodide Perovskites and Lead Iodide at Elevated Temperatures". Advanced Energy Materials (به انگلیسی). 6 (2): 1501803. doi:10.1002/aenm.201501803. ISSN 1614-6832.
- ↑ Matteocci, Fabio; Cinà, Lucio; Lamanna, Enrico; Cacovich, Stefania; Divitini, Giorgio; Midgley, Paul A.; Ducati, Caterina; Di Carlo, Aldo (2016). "Encapsulation for long-term stability enhancement of perovskite solar cells". Nano Energy. 30: 162–172. doi:10.1016/j.nanoen.2016.09.041. ISSN 2211-2855.
- ↑ Juarez-Perez, Emilio J.; Ono, Luis K.; Maeda, Maki; Jiang, Yan; Hawash, Zafer; Qi, Yabing (2018). "Photodecomposition and thermal decomposition in methylammonium halide lead perovskites and inferred design principles to increase photovoltaic device stability". Journal of Materials Chemistry A (به انگلیسی). 6 (20): 9604–9612. doi:10.1039/c8ta03501f. ISSN 2050-7488.
- ↑ Rolston, Nicholas; Watson, Brian L.; Bailie, Colin D.; McGehee, Michael D.; Bastos, João P.; Gehlhaar, Robert; Kim, Jueng-Eun; Vak, Doojin; Mallajosyula, Arun Tej (2016). "Mechanical integrity of solution-processed perovskite solar cells". Extreme Mechanics Letters. 9: 353–358. doi:10.1016/j.eml.2016.06.006. ISSN 2352-4316.
- ↑ García-Fernández, Alberto; Juarez-Perez, Emilio J.; Castro-García, Socorro; Sánchez-Andújar, Manuel; Ono, Luis K.; Jiang, Yan; Qi, Yabing (2018-08-14). "Benchmarking Chemical Stability of Arbitrarily Mixed 3D Hybrid Halide Perovskites for Solar Cell Applications". Small Methods (به انگلیسی). 2 (10): 1800242. doi:10.1002/smtd.201800242. ISSN 2366-9608.