حساب کاربری
زمان تقریبی مطالعه: 6 دقیقه
لینک کوتاه
فهرست حدها
این یک
فهرست از
حدهایی
برای
توابع
معروف است.
فهرست
۱
خواص
۲
حد چند تابع کلی
۳
برخی حدهای خاص
۴
حدهای توابع ساده
۵
حدهای توابع لگاریتمی و نمایی
۶
توابع مثلثاتی
۷
حدهای بینهایت
۸
منابع
خواص
اگر
lim
x
→
c
f
(
x
)
=
L
1
and
lim
x
→
c
g
(
x
)
=
L
2
{\displaystyle \lim _{x\to c}f(x)=L_{1}{\text{ and }}\lim _{x\to c}g(x)=L_{2}}
آنگاه:
lim
x
→
c
[
f
(
x
)
±
g
(
x
)
]
=
L
1
±
L
2
{\displaystyle \lim _{x\to c}\,[f(x)\pm g(x)]=L_{1}\pm L_{2}}
lim
x
→
c
[
f
(
x
)
g
(
x
)
]
=
L
1
×
L
2
{\displaystyle \lim _{x\to c}\,[f(x)g(x)]=L_{1}\times L_{2}}
lim
x
→
c
f
(
x
)
g
(
x
)
=
L
1
L
2
if
L
2
≠
0
{\displaystyle \lim _{x\to c}{\frac {f(x)}{g(x)}}={\frac {L_{1}}{L_{2}}}\qquad {\text{ if }}L_{2}\neq 0}
lim
x
→
c
f
(
x
)
n
=
L
1
n
{\displaystyle \lim _{x\to c}\,f(x)^{n}=L_{1}^{n}\qquad }
اگر n عددی صحیح و مثبت باشد.
lim
x
→
c
f
(
x
)
1
n
=
L
1
1
n
if
n
is a positive integer, and if
n
is even, then
L
1
>
0
{\displaystyle \lim _{x\to c}\,f(x)^{1 \over n}=L_{1}^{1 \over n}\qquad {\text{ if }}n{\text{ is a positive integer, and if }}n{\text{ is even, then }}L_{1}>0}
lim
x
→
c
f
(
x
)
g
(
x
)
=
lim
x
→
c
f
′
(
x
)
g
′
(
x
)
if
lim
x
→
c
f
(
x
)
=
lim
x
→
c
g
(
x
)
=
0
or
lim
x
→
c
|
g
(
x
)
|
=
+
∞
{\displaystyle \lim _{x\to c}{\frac {f(x)}{g(x)}}=\lim _{x\to c}{\frac {f'(x)}{g'(x)}}\qquad {\text{ if }}\lim _{x\to c}f(x)=\lim _{x\to c}g(x)=0{\text{ or }}\lim _{x\to c}|g(x)|=+\infty }
(
قاعدهٔ هوپیتال
)
حد چند تابع کلی
lim
h
→
0
f
(
x
+
h
)
−
f
(
x
)
h
=
f
′
(
x
)
{\displaystyle \lim _{h\to 0}{f(x+h)-f(x) \over h}=f'(x)}
lim
h
→
0
(
f
(
x
+
h
)
f
(
x
)
)
1
h
=
exp
(
f
′
(
x
)
f
(
x
)
)
{\displaystyle \lim _{h\to 0}\left({\frac {f(x+h)}{f(x)}}\right)^{\frac {1}{h}}=\exp \left({\frac {f'(x)}{f(x)}}\right)}
lim
h
→
0
(
f
(
x
(
1
+
h
)
)
f
(
x
)
)
1
h
=
exp
(
x
f
′
(
x
)
f
(
x
)
)
{\displaystyle \lim _{h\to 0}{\left({f(x(1+h)) \over {f(x)}}\right)^{1 \over {h}}}=\exp \left({\frac {xf'(x)}{f(x)}}\right)}
برخی حدهای خاص
lim
x
→
+
∞
(
1
+
k
x
)
m
x
=
e
m
k
{\displaystyle \lim _{x\to +\infty }\left(1+{\frac {k}{x}}\right)^{mx}=e^{mk}}
lim
x
→
+
∞
(
1
−
1
x
)
x
=
1
e
{\displaystyle \lim _{x\to +\infty }\left(1-{\frac {1}{x}}\right)^{x}={\frac {1}{e}}}
lim
x
→
+
∞
(
1
+
k
x
)
x
=
e
k
{\displaystyle \lim _{x\to +\infty }\left(1+{\frac {k}{x}}\right)^{x}=e^{k}}
lim
n
→
∞
n
n
!
n
=
e
{\displaystyle \lim _{n\to \infty }{\frac {n}{\sqrt[{n}]{n!}}}=e}
lim
n
→
∞
2
n
2
−
2
+
2
+
...
+
2
⏟
n
=
π
{\displaystyle \lim _{n\to \infty }\,2^{n}\underbrace {\sqrt {2-{\sqrt {2+{\sqrt {2+{\text{...}}+{\sqrt {2}}}}}}}} _{n}=\pi }
حدهای توابع ساده
lim
x
→
c
a
=
a
{\displaystyle \lim _{x\to c}a=a}
lim
x
→
c
x
=
c
{\displaystyle \lim _{x\to c}x=c}
lim
x
→
c
a
x
+
b
=
a
c
+
b
{\displaystyle \lim _{x\to c}ax+b=ac+b}
lim
x
→
c
x
r
=
c
r
if
r
is a positive integer
{\displaystyle \lim _{x\to c}x^{r}=c^{r}\qquad {\mbox{ if }}r{\mbox{ is a positive integer}}}
lim
x
→
0
+
1
x
r
=
+
∞
{\displaystyle \lim _{x\to 0^{+}}{\frac {1}{x^{r}}}=+\infty }
lim
x
→
0
−
1
x
r
=
{
−
∞
,
if
r
is odd
+
∞
,
if
r
is even
{\displaystyle \lim _{x\to 0^{-}}{\frac {1}{x^{r}}}={\begin{cases}-\infty ,&{\text{if }}r{\text{ is odd}}\\+\infty ,&{\text{if }}r{\text{ is even}}\end{cases}}}
حدهای توابع لگاریتمی و نمایی
For
a
>
1
:
{\displaystyle {\mbox{For }}a>1:\,}
lim
x
→
0
+
log
a
x
=
−
∞
{\displaystyle \lim _{x\to 0^{+}}\log _{a}x=-\infty }
lim
x
→
∞
log
a
x
=
∞
{\displaystyle \lim _{x\to \infty }\log _{a}x=\infty }
lim
x
→
−
∞
a
x
=
0
{\displaystyle \lim _{x\to -\infty }a^{x}=0}
If
a
<
1
:
{\displaystyle {\mbox{If }}a<1:\,}
lim
x
→
−
∞
a
x
=
∞
{\displaystyle \lim _{x\to -\infty }a^{x}=\infty }
توابع مثلثاتی
lim
x
→
a
sin
x
=
sin
a
{\displaystyle \lim _{x\to a}\sin x=\sin a}
lim
x
→
a
cos
x
=
cos
a
{\displaystyle \lim _{x\to a}\cos x=\cos a}
lim
x
→
0
sin
x
x
=
1
{\displaystyle \lim _{x\to 0}{\frac {\sin x}{x}}=1}
lim
x
→
0
1
−
cos
x
x
=
0
{\displaystyle \lim _{x\to 0}{\frac {1-\cos x}{x}}=0}
lim
x
→
0
1
−
cos
x
x
2
=
1
2
{\displaystyle \lim _{x\to 0}{\frac {1-\cos x}{x^{2}}}={\frac {1}{2}}}
lim
x
→
n
±
tan
(
π
x
+
π
2
)
=
∓
∞
for any integer
n
{\displaystyle \lim _{x\to n^{\pm }}\tan \left(\pi x+{\frac {\pi }{2}}\right)=\mp \infty \qquad {\text{for any integer }}n}
حدهای بینهایت
lim
x
→
∞
N
/
x
=
0
for any real
N
{\displaystyle \lim _{x\to \infty }N/x=0{\text{ for any real }}N}
lim
x
→
∞
x
/
N
=
{
∞
,
N
>
0
does not exist
,
N
=
0
−
∞
,
N
<
0
{\displaystyle \lim _{x\to \infty }x/N={\begin{cases}\infty ,&N>0\\{\text{does not exist}},&N=0\\-\infty ,&N<0\end{cases}}}
lim
x
→
∞
x
N
=
{
∞
,
N
>
0
1
,
N
=
0
0
,
N
<
0
{\displaystyle \lim _{x\to \infty }x^{N}={\begin{cases}\infty ,&N>0\\1,&N=0\\0,&N<0\end{cases}}}
lim
x
→
∞
N
x
=
{
∞
,
N
>
1
1
,
N
=
1
0
,
0
<
N
<
1
{\displaystyle \lim _{x\to \infty }N^{x}={\begin{cases}\infty ,&N>1\\1,&N=1\\0,&0<N<1\end{cases}}}
lim
x
→
∞
N
−
x
=
lim
x
→
∞
1
/
N
x
=
0
for any
N
>
1
{\displaystyle \lim _{x\to \infty }N^{-x}=\lim _{x\to \infty }1/N^{x}=0{\text{ for any }}N>1}
lim
x
→
∞
N
x
=
{
1
,
N
>
0
0
,
N
=
0
does not exist
,
N
<
0
{\displaystyle \lim _{x\to \infty }{\sqrt[{x}]{N}}={\begin{cases}1,&N>0\\0,&N=0\\{\text{does not exist}},&N<0\end{cases}}}
lim
x
→
∞
x
N
=
∞
for any
N
>
0
{\displaystyle \lim _{x\to \infty }{\sqrt[{N}]{x}}=\infty {\text{ for any }}N>0}
lim
x
→
∞
log
x
=
∞
{\displaystyle \lim _{x\to \infty }\log x=\infty }
lim
x
→
0
+
log
x
=
−
∞
{\displaystyle \lim _{x\to 0^{+}}\log x=-\infty }
منابع
Wikipedia contributors, "List of limits," Wikipedia, The Free Encyclopedia,
http://en.wikipedia.org/w/index.php?title=List_of_limits&oldid=430611140
(accessed September 2, 2011).
آخرین نظرات
توابع
توابع