کره (هندسه)
کُره یا سِپِهر (به انگلیسی: Sphere) یا گوی یک جسم هندسی کاملاً گرد در فضای سه بعدی است. برای نمونه توپ یک کره است. کره مانند دایره که در دو بعد است، در فضای سه بعدی یک کاملاً متقارن در گرداگرد یک نقطهاست. تمام نقاطی که بر سطح کره جای دارند در فاصلهٔ یکسان از مرکز کره قرار دارند. فاصلهٔ این نقطهها از مرکز کره، شعاع کره نام دارد و با حرف r نمایش داده میشود. بلندترین فاصله از دو سوی کره (که از درون کره عبور کند) قطر کره نام دارد. قطر کره از مرکز آن نیز میگذرد و در نه نتیجه اندازهٔ آن دو برابر شعاع است.
حجم کره
در سه بُعد، حجم درون یک کره از رابطهٔ زیر بدست میآید:
که در این رابطه، r شعاع کره و π عدد پی است. این رابطه را نخستین بار ارشمیدس بدست آورد. او نشان داد که حجم یک کره ۲/۳ حجم استوانهٔ محیطی آن کرهاست.
در ریاضیات امروزی حجم کره با کمک انتگرالگیری بدست میآید.
اثبات حجم کره
یک کره را در یک استوانه که قطر و ارتفاع آن برابر است محاط می کنیم. ابتدا کره را به دو نیم کره تقسیم میکنیم. اگر نیم کره را سه بار آب کنیم و در استوانه بریزیم حجم استوانه پر می شود.پس حجم نیمکره یک سوم حجم استوانه است و حجم کره دو سوم حجم استوانه است.
حجم استوانه=
اگر نسبت حجم کره به حجم استوانه را بر حجم استوانه ضرب کنیم حجم کره بدست می آید
محاسبهٔ حجم کره با کمک مفهوم انتگرال
نخست حجم نیم کره را بدست میآوریم و چون کره متقارن است حجم یک کرهٔ کامل دو برابر حجم نیم کره میشود. فرض کنید این کره از تعداد بی شماری دیسک دایرهای با ضخامت بسیار کم ساخته شدهاست. مجموع (انتگرال) حجم این دیسکها، حجم کرهٔ مورد نظر را میسازد. محور تمام این دیسکها بر روی محور yها قرار دارد در نتیجه دیسکی که بر روی نقطهٔ h = ۰ قرار دارد، شعاعی برابر با r دارد (s = r) و دیسکی که در نقطهٔ h = r قرار دارد، شعاعی برابر با صفر دارد (s = ۰).
اگر ضخامت دیسکها در هر نقطهٔ دلخواه h، برابر با δh باشد، آنگاه حجم دیسک برابر خواهد بود با مساحت مقطع دیسک در ضخامت آن:
پس حجم کل نیم کره برابر است با مجموع حجم دیسکها:
در بالای کره، شعاع دیسکها بسیار کوچک و نزدیک به صفر است. در نتیجه برای بدست آوردن مجموع حجم دیسکها باید از رابطهٔ بالا، انتگرال گرفت:
با توجه به قضیه فیثاغورس میدانیم که در هرنقطه بر روی محور عمودی داریم:
پس به جای
مقدار تازهٔ
مقدار انتگرال برابر است با:
حجم نیمی از کره برابر با
حجم کره در دستگاه مختصات قطبی نیز قابل محاسبه است که در آن حالت باید از رابطهٔ زیر استفاده کرد:
مساحت کره
مساحت کره از رابطهٔ زیر بدست میآید:
ارشمیدس نخستین کسی بود که توانست مساحت کره را بدست آورد. مشتق حجم کره نسبت به r، شعاع کره، مساحت کره را بدست میدهد. میتوان این گونه تصور کرد که حجم یک کره برابر است با مجموع مساحتهای بیشمار پوستهٔ کروی با ضخامت ناچیز که شعاع آنها از ۰ تا r میتواند متفاوت باشد. در نتیجه اگر هریک از جزء حجمهای کره را با δV، ضخامت هر پوسته را با δr و مساحت هر پوستهٔ کروی با شعاع r با A(r) نمایش دهیم؛ رابطهٔ زیر میان این متغیرها برقرار خواهد بود:
حجم کل برابر است با مجموع حجم هریک از این پوستهها:
هنگامی که δr به سمت صفر میل میکند باید از انتگرال بجای سیگما استفاده کنیم:
چون قبلاً فرمول حجم کره را بدست آوردهایم، پس خواهیم داشت:
از دو سر رابطهٔ بالا مشتق میگیریم:
که در حالت عمومی به صورت زیر نوشته میشود:
در دستگاه مختصات قطبی جزء سطح به صورت
مساحت کل کره از انتگرال جزء سطح در تمام سطح کره بدست میآید:
منابع
- ↑ Pages 141, 149. E.J. Borowski, J.M. Borwein (1989). Collins Dictionary of Mathematics. ISBN 0-00-434347-6.