جبر جابجایی
جبر جابجایی (به انگلیسی: Commutative algebra) شاخهای از جبر مجرد است که دربارهٔ حلقههای جابهجایی و ایدهآلهای آنها و مدولها بر روی چنین حلقههایی بحث میکند. دو مبحث هندسه جبری و «نظریه اعداد جبری» بوسیله جبر جایجایی ساخته شده است. برجستهترین حلقههای از حلقههای جایجایی حلقه چندجمله ایست. بحث بر روی حلقههایی که لازم نیست جابجایی باشد را جبر ناجابجایی مینامند.
این روش به صورتی منتقل به یک جبری دیگر میشود و به وسیله یک بردار منتقل میشود. این جبر به صورت مختصاتی نوشته میشود. در این روش مختصات جبری را K,H,G,Qو... به صورت حروف بزرگ نام گذاری میشود و بردار انتقال را به a.s.g.t.i.o.pو... به صورت حرف کوچک نام گذاری میکنیم. این مبحث در ضرب بردار ها و جمع بردار ها کاربرد دارد.
به صورت دو بعدی(y,x)
به صورت سه بعدی(z,y,x)
مثال
مثال:یک عبارت جبری به نام X به میخواهیم به عبارت جبری Y به صورت بردار a منتقل میکنیم و بعد Y را به S با بردار c منتقل میکنیم. (a=(3,4 و (c=(4,5 است
با چه برداری X را میتوان به S منتقل کنیم؟
حل:در این روش بردار a وc را باهم جمع میکنیم که میشود که برابر با(7,9)است.
تاریخ
موضوع جبر جابجایی که در ابتدا به عنوان نظریه ایده آل ها شناخته می شد، با کار ریچارد ددکیند بر روی ایده آل ها آغاز گشت که خود بر اساس کار های ارنست کومر و لئوپولد کرونکر بنا نهاده شده بود. بعد ها دیوید هیلبرت عبارت حلقه را معرفی کرد تا عبارت حلقه اعداد را که پیش از آن وجود داشت عمومی سازی کند. هیلبرت رهیافت مجرد تری را انتخاب نمود تا جایگزینی روش های محاسبه محور و ملموس گردد. این روش های ملموس و محاسبه محور ریشه در آنالیز مختلط و نظریۀ پایا داشت. در عوض هیلبرت به شدت امی نوتر را تحت تاثیر قرار داد، به طوری که امی نوتر نیز بسیاری از نتایج قبلی را در قالب شرط زنجیر صعودی بازگو کرد و امروزه این شرط به نام شرط نوتری شناخته می شود. یک مرحله مهم دیگر کار دانشجوی هیلبرت به نام امانوئل لاسکر بود، که ایده آل های اول را معرفی کرده و اولین نسخه ی قضیه ی لاسکر-نوتر را اثبات کرد.
شخصیت اصلی که موجب تولد جبر جابجایی به عنوان یک شاخه اصلی گشت ولفگانگ کرول بود که مفاهیم پایه ای موضعی سازی و تکمیل یک حلقه و همچنین حلقه های موضعی منظم را معرفی نمود. او مفهوم بعد کرول یک حلقه را قبل از این که آن را برای حلقه های ارزیافت و حلقه های کرول گسترش دهد، این مفهوم را برای حلقه های نوتری بنا نهاد. تا به امروز، قضیه ایده آل اصلی کرول به طور گسترده به عنوان تک مهم ترین قضیه ی جبر جابجایی شناخته می شود. این نتایج راه را برای معرفی جبر جابجایی به هندسه جبری هموار نمود، ایده ای که هندسه جبری را منقلب کرد.
اکثر توسعه های جبر جابجایی در عصر مدرن مربوط به مدول هاست. هم ایده آل های یک حلقه R و هم R-جبر ها حالات خاصی از R-مدول ها می باشند، لذا نظریه مدول ها هردو نظریۀ (نظریه ایده آل ها و گسترش حلقه ها) را در بر می گیرد. گرچه که این روند در کار های کرونکر آغاز گشت، رهیافت مدرن به جبر جابجایی از نظریه مدول ها را اغلب به کرول و نوتر نسبت می دهند.
منابع
- Michael Atiyah & Ian G. Macdonald, Introduction to Commutative Algebra, Massachusetts : Addison-Wesley Publishing, 1969.
- Sharp, R. Y., Steps in commutative algebra. Second edition. London Mathematical Society Student Texts, 51. Cambridge University Press, Cambridge, 2000. xii+355 pp. ISBN 0-521-64623-5
- Miles Reid, Undergraduate Commutative Algebra (London Mathematical Society Student Texts), Cambridge, UK : Cambridge University Press, 1996.