آنالیز هارمونیک
آنالیز هارمونیک شاخه ای از ریاضیات است که مرتبط با نمایش توابع یا سیگنالها به صورت برآیندی از امواج پایه بوده و به مطالعه و نمایش مفاهیم سریهای فوریه و تبدیل فوریه (یعنی فرم توسعه یافتهی آنالیز فوریه) میپردازد. در دو قرن اخیر، این شاخه به شاخهای وسیع تبدیل شده که کاربردهای گستردهای در نظریه اعداد، نظریه نمایش، پردازش سیگنال، مکانیک کوانتومی، آنالیز جزر و مدی و علوم اعصاب دارد.
عبارت "هماهنگها" (به انگلیسی harmonics) از ریشه یونانی harmonikos به معنای "ماهر در موسیقی" گرفته شده است. در مسائل فیزیکی مقدار ویژهای، این که فرکانس یک موج ضرایب صحیحی از موج دیگری باشد، معنادار شد، مثل هماهنگهای نوت های موسیقایی، اما این اصطلاح (هماهنگ) کاربردهایی فراتر از معنی اصلی آن پیدا کرد.
تبدیل فوریه کلاسیک روی
سریهای فوریه را میتوان در بستر فضاهای هیلبرت بهطور مناسبتری مطالعه کرد، چرا که در آنجا ارتباطی بین آنالیز هارمونیک و آنالیز تابعی ارائه میکند.
آنالیز هارمونیک کاربردی
بسیاری از کاربرد های آنالیز هارمونیک در علم و مهندسی با ایده یا فرضی شروع شد که یک پدیده یا سیگنال را می توان به صورت ترکیبی از جمع تک مؤلفه های ارتعاشی در نظر گرفت. جزر و مد اقیانوس و ریسمان مرتعش مثال های رایج و ساده ای هستند. اغلب رهیافت های نظری سعی می کنند با معادلات دیفرانسیل یا دستگاهی از معادلات استفاده کنند تا ویژگی های اساسی سیستم شامل دامنه، فرکانس و فاز های مؤلفه های ارتعاشی را توصیف کنند. معادلات خاصی به نوع میدان وابستگی دارند، اما نظریه ها عموماً سعی می کنند معادلاتی انتخاب کنند که نمایانگر اصول اصلی قابل کاربرد باشند.
رهیافت آزمایشی اغلب نیازمند داده هایی اند که به طور دقیق پدیده مورد نظر را ارزیابی کند. به عنوان مثال، در مطالعه جزر و مد، آزمایشگر ممکن است نمونه هایی از عمق آب را به صورت تابعی از زمان جمع آوری کند به گونه ای که بازه های فضایی به میزان کافی به هم نزدیک باشند تا هر نوسان در بازه زمانی به اندازه کافی بلند برای مشاهده چندین دوره نوسانی باشد.
به عنوان مثال، سیگنال تصویر بالایی یک موج صوتی گیتار باس است که با در آن نوت A با ریسمان باز با فرکانس پایه ای 55 هرتزی نواخته شده است. شکل موج حالت نوسانی دارد، اما پیچیده تر از یک موج ساده سینوسی است، که نشانگر حضور امواج دیگری در آن می باشد. مؤلفه های مختلف موج را می توان با اعمال تکنیک های آنالیز ریاضیاتی به نام تبدیل فوریه شناسایی کرد، نتیجه این تبدیل در تصویر پایینی نشان داده شده. توجه کنید که در فرکانس 55 هرتز پیک عمده ای مشاهده می شود، اما پیک های دیگری در فرکانس های 110 و 165 هرتز و فرکانس های دیگر مرتبط با آن دیده می شود که ضرایبی از 55 هرتز هستند. در این حالت فرکانس 55 هرتز به عنوان فرکانس بنیادی ریسمان مرتعش شناسایی شده و به ضرایب صحیحی که در آن ضرب می شود هماهنگ ها می گویند.
منابع
کتابشناسی
- Elias Stein and Guido Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton University Press, 1971. شابک ۰−۶۹۱−۰۸۰۷۸-X
- Elias Stein with Timothy S. Murphy, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton University Press, 1993.
- Elias Stein, Topics in Harmonic Analysis Related to the Littlewood-Paley Theory, Princeton University Press, 1970.
- Yitzhak Katznelson, An introduction to harmonic analysis, Third edition. Cambridge University Press, 2004. شابک ۰−۵۲۱−۸۳۸۲۹−۰; 0-521-54359-2
- Terence Tao, Fourier Transform. (Introduces the decomposition of functions into odd + even parts as a harmonic decomposition over ℤ₂.)
- Yurii I. Lyubich. Introduction to the Theory of Banach Representations of Groups. Translated from the 1985 Russian-language edition (Kharkov, Ukraine). Birkhäuser Verlag. 1988.
- George W. Mackey, Harmonic analysis as the exploitation of symmetry–a historical survey, Bull. Amer. Math. Soc. 3 (1980), 543–698.